CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Level

9231 FURTHER MATHEMATICS

9231/23

Paper 2, maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9231	23

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9231	23

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR–2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

	Page 4	Mark Sche	eme	Syllabus	Pa	per	
	GCE A LEVEL – October/November 2013 923		9231	2	23		
Question Number	Mark Scheme	e Details				Part Mark	Total
1	Find radial co	omponent of acceleration:	$(2 - 2 \times 3 + 3^2)^2 / 0.5 =$	50 [m s ⁻²]	M1 A1		
	Find transver	se component of acceleration:	$-2+2 \times 3 = 4 \text{ [m s}^{-2}\text{]}$		B1	3	3
2	Use conserva	tion of momentum, e.g.:	$4mv_A + \lambda mv_B = 4mu$		B1		
	Use restitutio eqn.):	on (must be consistent with prev.	$v_A - v_B = -\frac{1}{2} u$		B1		
	Solve for v_B :		$4(v_B-\frac{1}{2}u)+\lambda v_B=4u$				
	(or verify	eqns are satisfied by this v_B)	$v_B = 6u / (\lambda + 4) \mathbf{A.G.}$		M1 A1	4	
	Use conserva	tion of momentum, e.g.:	$\lambda m w_B + m w_C = \lambda m v_B$		B1		
	Use restitutio eqn.):	on (must be consistent with prev.	$w_B - w_C = -\frac{1}{2} v_B$		B1		
	Eliminate <i>w</i> _B	:	$(1+\lambda)w_C = (1+\frac{1}{2})\lambda v_B$		M1		
	Put $w_C = u$, so	ubstitute for v_B and solve for λ :	$(1 + \lambda) = 9\lambda/(\lambda + 4)$				
			$\lambda^2 - 4\lambda + 4 = 0, \ \lambda = 2$		M1 A1	5	9

...

.

_

- -

_

	Page 5	Mark Sch	eme	Syllabus	Pa	per	
		GCE A LEVEL – Octobe	er/November 2013	9231	2	23]
3	Equate radia	I forces at A and B (M1 for	$T - mg\cos\theta = mv_A^2/a$		M1 A1		
	enner):		$T/8 + mg\sin\theta = mv_B^2/a$!	A1		
	Find 2 energ	y eqns (M1 for either), e.g.:	$\frac{1}{2}mv_{A}^{2} = \frac{1}{2}mu^{2} - mga(1)$	$-\cos\theta$)	M1 A1		
			$\frac{1}{2}mv_B^2 = \frac{1}{2}mu^2 - mga(1)$	$+\sin\theta$)	A1		
	Find u by e.g	g, first eliminating <i>T</i> :	$m v_A^2/a + mg \cos \theta =$				
			$8 m v_B^2 / a - 8$	$mg\sin heta$			
			$v_A^2 = 8v_B^2 - 8ga(4/5) - ga(4/5)$	ga(3/5)			
			$=8v_B^2-7ga$		M1		
	an	id then finding one of v_A^2 or v_B^2 :	$1/_{2}mv_{A}^{2} = 1/_{2}mv_{B}^{2}$				
			$+ mga(\cos \theta)$	$+\sin\theta$)			
			$v_A^2 = v_B^2 + (14/5) ga$				
			$v_A^2 = (21/5)ga \text{ or } v_B^2 = (21/5)ga v_B^2 = (21/5$	(7/5)ga	M1		
	Hence <i>u</i> :		$u^2 = v_A^2 + (4/5)ga$				
			or $v_B^2 + (18/2)$	5)ga			
			$=5ga, u=\sqrt{(5ga)}$		A1	9	9

		Page 6	Mark S	Mark Scheme		Pa	per]
			GCE A LEVEL – Octo	ber/November 2013	9231	2	3	
4		Resolve verti modulus λ :	cally at equilibrium with	$\lambda a / 4a = mg [\lambda = 4mg]$	Ν	M1 A1		
		Use Newton'	s Law at general point:	$m \mathrm{d}^2 x / \mathrm{d}t^2 = mg - \lambda (a + x)$:)/4 <i>a</i>			
				$[or - mg + \lambda (a-x)/$	[4 <i>a</i>] N	M1 A1		
		Simplify to g	ive standard SHM eqn:	$\mathrm{d}^2 x/\mathrm{d}t^2 = -\left(g/a\right)x$	A	A1 B1)		
		S.R.: Stating (max 4/6):	this without derivation		(D 1)	6	
		Find period 7	$T = 2\pi/\omega$ with $\omega = \sqrt{(g/a)}$:	$T = 2\pi/\sqrt{(g/a)} \text{ or } 2\pi\sqrt{(a/a)}$	<i>(g)</i> E	31		
		Equate speed speed:	at P to one-half maximum	$\omega^2 (A^2 - x^2) = \frac{1}{4} \omega^2 A^2,$	Ν	M1 A1		
		Find x^2 :		$x^2 = \frac{3}{4}A^2 = \frac{3}{4}(\frac{1}{2}a)^2 = \frac{3a^2}{16}$		A 1	4	
		Find OP:		$OP = (5 \pm \frac{1}{4}\sqrt{3}) a$ (A.E.	.F.) A	A 1		10
5	(i)	Find R_P by e.	g. moments about Q for disc:	$R_P r \cos 60^\circ = W r \sin 60^\circ$	50° N	M1 A1		
				$R_P = W \tan 60^\circ = \sqrt{3} \ W$	A.G.	A1	3	
	(ii)	Find R_Q by re	solving vertically for disc:	$R_Q \cos 60^\circ = W, R_Q = 2$	W E	31	3	
		Find R_B by e.	g. moments about A for AB:	$R_B 3a \sin 60^\circ$				
				$= 2W(3a/2)\cos 60^\circ$	$+R_Q a$ N	M1 A1		
				$R_B = W(3/2 + 2) / (3\sqrt{3}/2)$	2)			
				$= (7\sqrt{3} / 9) W A.G.$		A1	4	
		Resolve horiz	contally and vertically for rod	$X_A = R_B - R_Q \sin 60^\circ$		M1		
		(M1 for	either)	$= -(2\sqrt{3}/9) W$	A	A 1		
		(or	for rod and disc):	$Y_A = 2W + R_Q \cos 60^\circ =$	= 3 <i>W</i>	A 1		
		Find magnitu	de <i>R</i> of reaction at <i>A</i> :	$R = \sqrt{(4 \times 3/81 + 9)} W$		M1		
				$=\sqrt{(247/27)} W = 3.02$	e W A	A 1	5	12

	Page 7	Mark Schem	ne	Syllabus	Paper]
		GCE A LEVEL – October/	November 2013	9231	2	23	
6	State or fin	d E(<i>T</i>):	E(T) = 1/0.2 = 5		B1	1	
	State or fin	d distribution function of <i>T</i> :	$\mathbf{F}(t) = 1 - \exp\left(-0.2t\right) \left(-0.2t\right)$	(t ù 0)	B1		
			= 0 (otherwise <i>or</i>	<i>t</i> < 0)	B1		
	Find $P(T > $	10):	P(T > 10) = 1 - F(10)	$= 1 - (1 - e^{-2})$	M1		
			$= e^{-2} or 0.13$	35	A1	4	5
7	Find Σ (<i>x</i> –	$(\overline{x})^2$:	$\Sigma (x - \overline{x})^2 = 25 - 10^2/n$	1	B1		
	Find Σ (<i>y</i> –	\overline{y}) ² :	$\Sigma (y - \overline{y})^2 = 43.5 - 15^2$	$^{2}/2n$	B1		
	Equate poo	led estimate of σ^2 to 2:	$(25-10^2/n+43.5-1)$	$5^{2}/2n)/$			
			(3n-2)=2		M1 A1		
	Rearrange	to give quadratic eqn for <i>n</i> :	$12n^2 - 145n + 425 = 0$		M1		
	Find <i>n</i> (inte	eger value):	$n = (145 \pm 25)/24 = 5 \ (\neq 7.08)$		M1 A1	7	7
8	Find value	of <i>p</i> for binomial dist.:	mean = $150/100$, $p = 1$	$1.5/6 = \frac{1}{4}$	M1 A1		
	State (at lea	ast) null hypothesis:	$H_0: B(6, p)$ fits data (A	A.E.F.)	B1		
	Find expect	ted binomial values (to 1 d.p.):	17.80 35.60 29.66 13.	18 3.30 0.44 0.0	02 M1 A1		
	Combine la	ast four cells since exp. value < 5 :	<i>O</i> : 11 43 35 11				
			<i>E</i> : 17·80 35·60 29·66	16.94	*M1		
	Calculate v	alue of χ^2 (to 2 d.p.; A1 dep *M1):	$\chi^2 = 2.60 + 1.54 + 0.9$	6 + 2.08			
			= 7.18 (<i>or</i> 7.14 if 1	d.p.)	M1 *A1		
	State or use $d \mathbf{n}$	e consistent tabular value (to 2	$\chi_{2, 0.95}^{2} = 5.991$ (cells	combined)	*B1		
	а.р. <i>ј</i> .		$[\chi_{3, 0.95}^2 = 7.815, \chi_{4, 0.95}^2]$	$_{95}^{2} = 9.488$]			
	Correct cor	nclusion (A.E.F., dep *A1, *B1):	$\chi^2 > 5.99$ so distn. doe	es not fit	B1	10	10

	Page 8	Mark Schen GCE A LEVEL – October/	ne November 2013	Syllabus 9231	Pa 2	per 23]
9	Calculate s	ample mean:	$\overline{x} = 94.5 / 9 = 10.5$		M1		
	Estimate p	opulation variance:	$s^2 = (993 \cdot 6 - 94 \cdot 5^2 / 9)$	/ 8			
	(al	low biased here: $0.15 \text{ or } 0.3873^2$)	= 0.16875 or 0.4108	8^2	M1		
	State hypo	theses (A.E.F.):	H ₀ : $\mu = 10.2$, H ₁ : $\mu \neq 10.2$ t = ($\bar{x} - 10.2$)/(s/√9) = 2.19		B1		
	Calculate v	value of t (to 3 s.f.):			M1 *A1		
	State or us	e correct tabular <i>t</i> value (to 3 s.f.):	$t_{8, 0.975} = 2.306$		*B1		
	(or can cor	npare \bar{x} with $10.2 + 0.316 = 10.52$)					
	Correct cor	nclusion (AEF, dep *A1, *B1):	Population mean is 10	·2	B1	7	
	Find confidence interval (allow <i>z</i> in place of <i>t</i>) e.g.:		$10.5 \pm t \sqrt{\{1.35/(8 \times 9)\}}$		M1		
	Use of corr	rect tabular value:	$t_{8,0.95} = 1.86[0]$		A1		
	Evaluate C	I. correct to 3 s.f.:	10.5 ± 0.255 or [10.2,	10.8]	A1	3	10

[Page 9	Mark Schei	ne	Syllabus	Pa	per	
L		GCE A LEVEL – October	/November 2013	9231	2	23	
10	Find correls	ation coefficient <i>r</i> :	$r = (24.25 - 7.5 \times 38.0)$ $\sqrt{(4.73 - 7.5^2/12)} (12)$	5/12) / 24·84 - 38·6 ² /12)	} M1 A1		
	(A0 if only	3 s.f. used)	$= 0.125 / \sqrt{0.0425 \times 0}$).6767)			
			$= 0.125 / (0.2062 \times 0.000)$	8226)			
			[<i>or</i> 0.01042 / $\sqrt{(0.003)}$	542 × 0·05639)			
			= 0.01042 / (0.05951	× 0·2375)]			
			= 0.737		*A1	3	
	Calculate g	radient b in $y - \overline{y} = b(x - \overline{x})$:	<i>b</i> = 0.125 / 0.0425 = 2	2.94[1]	B1		
	Find regres	sion line of y on x (A.E.F.):	y = 38.6/12 + 2.94 (x -	- 7.5/12)	M1		
	(allow	use of x on y)	= 3.21[7] + 2.94 (x - 0.625)				
			<i>or</i> $1.38 + 2.94x$		A1		
	Find y when	n x = 0.64:	y = 3.26 [kg]		B1	4	
	State both h	hypotheses:	$H_0: \rho = 0, H_1: \rho \neq 0$		B1		
	State or use	correct tabular two-tail r value:	$r_{12, 2\%} = 0.658$		*B1		
	Valid meth	od for reaching conclusion:	Reject H_0 if $ r > tabul$	ar value	M1		
	Correct cor	clusion (AEF, dep *A1, *B1):	There is non-zero corre	elation	A1	4	11

	Page 10		Mark Schem	Mark Scheme Sylla		Pa	per	
			GCE A LEVEL – October/N	lovember 2013	9231	2	3	
11	(a) (i)	State or find	d MI of rod <i>AB</i> about <i>C</i> :	$I_{AB} = \frac{1}{3} 4m(3a)^2 + 4m($	7 <i>a</i>) ²	M1 A1		
		Find MI of disc about <i>C</i> :		$I_{disc} = \frac{1}{2} 8m(2a)^2 + 8m(2a)^2$ [= 48ma ²]		M1 A1		
		Find MI of	body about <i>C</i> :	$I = I_{AB} + I_{disc} = 256ma^2$		A1		
		Use eqn of	circular motion to find $d^2\theta/dt^2$:	$I d^2 \theta / dt^2 = [-] (4 \times 7 + 8 \times 2) mga s$		9 M1 A1		
		Approxima	te sin θ by θ and substitute for <i>I</i> :	$\mathrm{d}^2\theta/\mathrm{d}t^2 = -\left(11g/64a\right)\theta$		A1		
		Find period	$T = 2\pi/\omega$ with $\omega = \sqrt{(11g/64a)}$:	$T = 16\pi \sqrt{(a/11g)}$ A.G.		B1	9	
	(ii)	Use energy	to find max. ang. vel. ω :	$\frac{1}{2}I\omega^2 = 4mg \ 7a \ (1 - cc)$	(θ,θ) (or θ)			
				+ 8mg 2a (1 - 6)	$\cos \theta$)	M1 A1		
		Substitute f	for <i>I</i> and $\cos \theta$ and simplify:	$\omega^2 = 2 (11 mga) 0.4 / (2)$	$256ma^2$)			
				= 11g / 80a		A1		
		Find maxim	num speed of A (A.E.F.):	$v_A = 10a\omega = \sqrt{(55ga/4)}$)	M1 A1	5	14

	P	age 11	Mark Scheme		Syllabus	Pa	per]
			GCE A LEVEL – October	/November 2013	9231	2	3	
11 (k)	Find $F(x)$ for	or $0 < x < 60$ by integration:	$F(x) = \frac{1}{3} (x - 20)^3 / 240$	000			
				$+ \frac{1}{3} 20^{3}/240$	000	M1		
				$=(x-20)^3/7200$	00 + 1/9	A1		
		State $F(x)$ for	or other values of <i>x</i> :	$F(x) = 0 \ (x \le 0), \ 1 \ (x \ge 0)$	$F(x) = 0 \ (x \le 0), \ 1 \ (x \ge 60)$			
		Find G(<i>t</i>) for $0 < t < 60$ from $X + T = 60$:		$\mathbf{G}(t) = \mathbf{P}(T < t)$				
				$= \mathbf{P}(60 - X < t)$				
				$= \mathbf{P}(X > 60 - t)$				
				= 1 - F(60 - t)				
				$= 8/9 - (40 - t)^3 / 72000$ A.G.		M1 A1	5	
		Formulate e	eqn for median <i>m</i> of <i>T</i> :	$8/9 - (40 - m)^3 / 7200$	$0 = \frac{1}{2}$	M1		
		Find value	of <i>m</i> :	$(40-m)^3 = (8/9 - \frac{1}{2})$	72000			
				= 28000		M1		
				$m = 40 - 28000^{1/3} = 9$	·63	A1		
		Find $g(t)$ fo	r $0 < t < 60$:	$g(t) = (40 - t)^2 / 24000$)	M1 A1		
		Find $E(T)$ fr	rom $\int t g(t) dt$:	$E(T) = \int (40^2 t - 80t^2 + t^2) dt = 10^{-10} + 10^{-$	t^{3}) dt /24000	M1		
				$= [\frac{1}{2} 40^2 t^2 - \frac{1}{3} 80t^3 +$	$\frac{1}{4}t^{4}]_{0}^{60}/24000$	A1		
				= 120 - 240 + 135 = 1	15	A1	9	14