## UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Level

# MARK SCHEME for the May/June 2010 question paper for the guidance of teachers

### 9231 FURTHER MATHEMATICS

9231/12

Paper 12, maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

| Page 2 | Mark Scheme: Teachers' version | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | GCE A LEVEL – May/June 2010    | 9231     | 12    |

#### **Mark Scheme Notes**

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep\*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
   B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

| Page 3 | Mark Scheme: Teachers' version | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | GCE A LEVEL – May/June 2010    | 9231     | 12    |

The following abbreviations may be used in a mark scheme or used on the scripts:

| AEF | Any Equivalent Form (of answer is equally acceptable)                                                                               |
|-----|-------------------------------------------------------------------------------------------------------------------------------------|
| AG  | Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid) |
| BOD | Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)                                              |
| CAO | Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)                                         |
| CWO | Correct Working Only – often written by a 'fortuitous' answer                                                                       |
| ISW | Ignore Subsequent Working                                                                                                           |
| MR  | Misread                                                                                                                             |
| PA  | Premature Approximation (resulting in basically correct work that is insufficiently                                                 |
|     | accurate)                                                                                                                           |
| sos |                                                                                                                                     |

#### **Penalties**

- MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through  $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR-2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

| Page 4 | Mark Scheme: Teachers' version | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | GCE A LEVEL – May/June 2010    | 9231     | 12    |

1 
$$1+1+(y')^3=29 \Rightarrow (y')^3=27 \Rightarrow y'=3$$
 B1

$$2x + 2yy'$$
,  $+3(y')^2y'' = 0$  M1A1, A1

$$2-6+27 y''=0 \Rightarrow y'=\frac{4}{27}$$

[5]

#### **2** (i) Sketch of *C*:

Approximately correct shape and location for 
$$0 \le \theta < 2\pi$$
 B1

Asymptotic approach to circle 
$$r = a$$
 B1 [3]

(ii)  $A = (a^2/2) \int_{\ln 2}^{\ln 4} (1 - 2e^{-\theta} + e^{-2\theta}) d\theta$  M1A1

$$= (a^{2}/2)[\theta + 2e^{-\theta} - (1/2)e^{-2\theta}]_{\ln 2}^{\ln 4}$$
 A1

$$= ... = (a^2/2)(\ln 2 - 13/32)$$
 (AG)

[4]

3 
$$\frac{\mathrm{d}s}{\mathrm{d}t} = \sqrt{t(t^2 + 4) + t^2(4 - t)} = \sqrt{8t^2} = 2\sqrt{2}t$$
 B1

$$s = 2\sqrt{2} \int_0^2 t dt = \sqrt{2} \left[ t^2 \right]_0^2 = 4\sqrt{2} \quad (AG)$$
 M1A1

[3]

$$y = (1/3)(4-t^2)^{3/2}$$
 B1

$$S = +2\pi/3 \int_0^2 2\sqrt{2}t (4-t^2)^{3/2} dt$$
 M1

$$= \dots = \left[ -\left(4\sqrt{2}\pi/15\right)\left(4 - t^2\right)^{5/2} \right]_0^2$$
 A1

$$=128\sqrt{2}\pi/15$$
A1
[4]

4  $(N+1/2)^6 - 1/64 = 6S_N + (5/4)N^2(N+1)^2 + 3N(N+1)/16$ 

M1A1A1

M1 for application of difference method:

A1 for LHS correct: A1 for RHS correct

$$S_N = (1/6)(N+1/2)^6 - (5/24)N^2(N+1)^2 - (1/32)N(N+1) - 1/384$$

Or 
$$\frac{1}{6} \left\{ (N + \frac{1}{2})^6 - (\frac{1}{2})^6 - \frac{5N^2(N+1)^2}{4} - \frac{3}{16}N(N+1) \right\}$$

[4]

(i) For 
$$\lambda = 6$$
,  $S_{\infty} = 1/6$ 

(ii) For 
$$\lambda > 6$$
,  $S_{\infty} = 0$ 

[3]

| Page 5 | Mark Scheme: Teachers' version | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | GCE A LEVEL – May/June 2010    | 9231     | 12    |

5 
$$D[(x^2/2)(\ln x)^n] = x(\ln x)^n + (nx/2)(\ln x)^{n-1}$$
 M1  

$$\Rightarrow [(x^2/2)(\ln x)^n]_1^e = I_n + (n/2)I_{n-1}$$
 A1  

$$\Rightarrow \dots \Rightarrow I_n = e^2/2 - (n/2)I_{n-1} \text{ for } n \ge 2$$
  

$$\Rightarrow I_{n+1} = e^2/2 - (n+1)2I_{n-1} \text{ for } n \ge 1$$
 A1  
[3]

OR

$$\int_{1}^{e} x(\ln x)^{n} dx = \left[ (x^{2}/2)(\ln x)^{n} \right]_{1}^{e} - \int_{1}^{e} (nx/2)(\ln x)^{n-1} dx$$
M1A1

$$\Rightarrow I_n = e^2/2 - (n/2)I_{n-1} \qquad \Rightarrow I_{n+1} = \frac{e^2}{2} - \frac{(n+1)}{2}I_n$$
 A1

$$H_k$$
:  $I_k = A_k e^2 + B_k$ , where  $A_k$  and  $B_k$  are rational

 $H_k \Rightarrow I_{k+1} = e^2/2 - (k+1)(A_k e^2 + B_k)/2,$ 

$$= A_{k+1}e^2 + B_{k+1}, \text{ where } A_{k+1} = 1/2 - (k+1)A_k/2, B_{k+1} = -(k+1)B_k/2,$$
 M1

**A**1

$$\Rightarrow A_{k+1}$$
 and  $B_{k+1}$  are rational

$$I_1 = e^2/4 + 1/4 \Rightarrow A_1 = 1/4, B_1 = 1/4 \Rightarrow H_1$$
 is true

Completion of induction argument

A1

[6]

**6** Obtains an equation in y not involving radicals, e.g.,

$$y(y+1)^2 = 1$$
  
 $\Rightarrow ... \Rightarrow y^3 + 2y^2 + y - 1 = 0 \text{ (AG)}$ 
A1
[2]

(i) 
$$S_2 = -2$$
  
 $S_4 = 4 - 2 = 2$ 
B1
M1A1
[3]

(ii) 
$$S_6 = -2S_4 - S_2 + 3 = 1$$
 M1A1

OR

$$\Sigma \alpha^{2} = -2, \ \Sigma \alpha^{2} \beta^{2} = 1, \ \alpha^{2} \beta \gamma^{2} = 1$$

$$S_{6} = (\Sigma \alpha^{2})^{3} - 3\Sigma \alpha^{2} \Sigma \alpha^{2} \beta^{2} + 3\alpha^{2} \beta^{2} \gamma^{2}$$

$$= (-2)^{3} - 3 \times (-2) \times 1 + 3$$

$$= -8 + 6 + 3$$

$$= 1$$
A1

$$S_8 = -2S_6 - S_4 + S_2 = -6$$
 M1A1 [4]

| Page 6 | Mark Scheme: Teachers' version | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | GCE A LEVEL – May/June 2010    | 9231     | 12    |

7 (i) Solves any 2 of the equations:

$$4+2\lambda=4+\mu, \ -2+\lambda=-5-\mu, \ -4\lambda=2-\mu$$
 to obtain  $\lambda=-1, \ \mu=-2$  M1A1 Checks consistency with the third equation A1

(ii) 
$$P = |(\mathbf{i} - 2\mathbf{j} + 2\mathbf{k}).(5\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}) / \sqrt{38}|$$
  
=7 /  $\sqrt{38} = 1.14$  A1

OR

$$\mathbf{n} = -5\mathbf{i} - 2\mathbf{j} - 3\mathbf{k}$$
Plane is  $5x + 2y + 3z = 16$ 
A1

$$P = \frac{15 - 10 + 18 - 16}{\sqrt{5^2 + 2^2 + 3^2}} = \frac{7}{\sqrt{38}}$$

OR

Plane is 
$$5x + 2y + 3z = 16$$
 (as above) M1A1

Sub. general pt on perpendicular  $\begin{pmatrix} 3+5t \\ -5+2t \\ 6+3t \end{pmatrix} \Rightarrow t = -\frac{7}{38}$ 

$$\Rightarrow P = \begin{vmatrix} 5t \\ 2t \\ 3t \end{vmatrix} = 1.14$$
 A1

(iii) 
$$(\mathbf{i} - 2\mathbf{j} + 2\mathbf{k}) \times (2\mathbf{i} + \mathbf{j} - 4\mathbf{k}) = 6\mathbf{i} + 8\mathbf{j} + 5\mathbf{k}$$
  
OR  $(\mathbf{i} + 3\mathbf{j} - 6\mathbf{k}) \times (2\mathbf{i} + \mathbf{j} - 4\mathbf{k}) = -6\mathbf{i} - 8\mathbf{j} - 5\mathbf{k}$ , etc.

B1
$$d = |6\mathbf{i} + 8\mathbf{j} + 5\mathbf{k}| / \sqrt{21} = \sqrt{125/21} = 2.44$$
M1A1A1
[4]

OR

Let Q be the foot of the perpendicular from P to l, and A be the known point on  $l_1$ 

$$AQ = \left| (\mathbf{i} - 2\mathbf{j} + 2\mathbf{k}) \cdot \frac{(2\mathbf{i} + \mathbf{j} - 4\mathbf{k})}{\sqrt{21}} \right| = \frac{8}{\sqrt{21}}$$
 M1A1

$$AP^2 = 1^2 + (-2)^2 + 2^2 = 9$$
 B1

$$PQ^2 = 9 - \frac{64}{21} = \frac{125}{21} \Rightarrow PQ = \frac{5\sqrt{5}}{21}$$
 A1

OR

$$\overrightarrow{PQ} = \begin{pmatrix} 4+2t \\ -2+t \\ -4t \end{pmatrix} - \begin{pmatrix} 3 \\ -5 \\ 6 \end{pmatrix} = \begin{pmatrix} 1+2t \\ 3+t \\ -6-4t \end{pmatrix} \therefore \begin{pmatrix} 1+2t \\ 3+t \\ -6-4t \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \\ -4 \end{pmatrix} = 0$$
 M1

$$\Rightarrow t = -\frac{29}{21}$$
 A1

$$\overrightarrow{PQ} = \frac{1}{21} \begin{pmatrix} -37 \\ 34 \\ -10 \end{pmatrix} \Rightarrow \left| \overrightarrow{PQ} \right| = \frac{1}{21} \sqrt{37^2 + 34^2 + 10^2} = 2.44$$
 M1A1

|   | Page 7                                                                              | Mark Scheme: Teachers' version                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Syllabus                                               | Paper                   |
|---|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------|
|   |                                                                                     | GCE A LEVEL – May/June 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9231                                                   | 12                      |
| 8 | $\begin{pmatrix} 4 & 1 \\ -4 & -1 \\ 0 & -1 \end{pmatrix}$ $\Rightarrow eigenvalue$ | $ \begin{array}{c} -1 \\ 4 \\ 5 \\ -1 \\ \end{array} \begin{pmatrix} 1 \\ -2 \\ -3 \\ -3 \\ \end{pmatrix} $ $ = 3 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        | M1<br>A1<br>[2]         |
|   | Eigenvector co                                                                      | presponding to 4 is $\begin{pmatrix} 1 \\ -4 \\ -4 \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        | M1A1 [2]                |
|   | $\mathbf{D} = \operatorname{diag}(1\ 24)$                                           | 3 1024)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        | В1                      |
|   | $\mathbf{P} = \begin{pmatrix} 1 \\ -4 \\ -1 \end{pmatrix}$                          | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        | A1                      |
|   | $\mathbf{Q} = \mathbf{P}^{-1}$                                                      | 1 - 4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        | B1                      |
|   | $= \begin{pmatrix} -2/3 & -2/3 \\ 2 & -1/3 \end{pmatrix}$                           | $ \begin{pmatrix} 1/2 & 1/3 \\ 1/2 & 0 \\ 0 & -1/3 \end{pmatrix} $ ft on <b>P</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        | M1A2√                   |
|   |                                                                                     | lid method: A2 if completely correct error: A0 if > 1 errors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        | [6]                     |
| 9 | (i) $\exp(2\pi ki)$                                                                 | (5), k = 0, 1, 2, 3, 4  (AEF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        | M1A1<br>[2]             |
|   |                                                                                     | correct fifth root of unity actly 5 distinct, correct roots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                        |                         |
|   |                                                                                     | $ (-2\pi i/3) $ $ (-2\pi i/15 + 2\pi ki/5) $ ally spaced on circle $ z  = 2$ ; correctly placed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        | M1<br>A1<br>M1A1<br>[4] |
|   |                                                                                     | $a^{k} = \frac{[1 - (w/2)^{5}]}{[1 - w/2]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                        | M1                      |
|   | $=\frac{1-(1/3)}{2}$                                                                | $\frac{32)(-16-16\sqrt{3}i)}{[1-w/2]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        | A1                      |
|   |                                                                                     | $+ \sqrt{3}i)/(2-w) \text{ (AG)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        | A1<br>[3]               |
|   | (iv) Deduces                                                                        | from diagram in (ii) that minimum of $ 2 - w $ occurs when $w = \frac{1}{2} \left  \frac$ | $= 2e^{-2\pi i/15} \text{ or } 2e^{\frac{28\pi}{15}i}$ | M1A1<br>[2]             |
|   |                                                                                     | nates 5 possible values of $ 2 - w $<br>minimum of $ 2 - w $ correctly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        | M1<br>A1                |

|    | Page 8                                          | Mark Scheme: Teachers' version                                                                                                                                                                                                                       | Syllabus | Paper                   |
|----|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------|
|    |                                                 | GCE A LEVEL – May/June 2010                                                                                                                                                                                                                          | 9231     | 12                      |
| 10 | $\Rightarrow r(\mathbf{A}) = 3 \text{ pro}$     | $ \begin{array}{c} 12 \\ 12 \\ 2a \end{array} \rightarrow \dots \rightarrow = \begin{pmatrix} 1 & 4 & 12 \\ 0 & a-8 & -12 \\ 0 & 0 & 2a-36 \end{pmatrix} $ evided $a \neq 18$ and $a \neq 8$ ution for all values of $a$ except $a = 18$ and $a = 8$ |          | M1A1<br>A1<br>A1<br>[4] |
|    | $\Rightarrow a = 8 \text{ or } 18$              | $\Rightarrow a^2 - 26a + 144 = 0$                                                                                                                                                                                                                    |          | (M1A1)<br>(A1)          |
|    | $a = 18 \Rightarrow 0z =$                       | -5 which is impossible for any finite $z$ , or equivalent contra                                                                                                                                                                                     | adiction | M1A1                    |
|    | When $a = 8$ sy $x + 4y = 2$ and                | The stem reduces to 2 equations: $z = 1/4$                                                                                                                                                                                                           |          | [2]<br>M1               |
|    | All solutions the                               |                                                                                                                                                                                                                                                      |          | A 1                     |
|    |                                                 | $\lambda$ )/4, $z = 1/4$ where $\lambda$ is real etrised in any equivalent way                                                                                                                                                                       |          | A1                      |
|    |                                                 | number of solutions                                                                                                                                                                                                                                  |          | A1                      |
|    | $\lambda + (2 - \lambda)/4 +$                   |                                                                                                                                                                                                                                                      |          | M1                      |
|    | $\Rightarrow \lambda - 1/3 \Rightarrow 3$       | x = 1/3, y = 5/12, z = 1/4                                                                                                                                                                                                                           |          | A1<br>[5]               |
| 11 | EITHER $y' = 3z^{2}z'$ $y'' = 6z(z')^{2} + 3z'$ | $3z^2z''$                                                                                                                                                                                                                                            |          | B1<br>B1                |
|    | Obtains given                                   | y, x DE (AG)                                                                                                                                                                                                                                         |          | B1<br>[3]               |
|    | PI: y = x                                       | $\cos 2x + B\sin 2x]$ $\cos 2x + B\sin 2x] + x$                                                                                                                                                                                                      |          | M1A1<br>M1A1<br>A1      |
|    |                                                 | = 1, $y' = -2$ (both)<br>= 1, $B = -1$ (both)<br>$-\sin 2x + x$ ] <sup>1/3</sup>                                                                                                                                                                     |          | B1<br>M1A1<br>A1<br>[9] |
|    | When $x = 0$ , $z$                              | us 4 marks:<br>$(x + B\sin 2x) + x]^{1/3}$<br>= 1, $z' = -2/3$ (both)<br>= 1, $B = -1$ (both)                                                                                                                                                        |          | (B1)<br>(B1)<br>(M1A1)  |

M1 A1 [2]

For large positive  $x : e^{-x} (\cos 2x - \sin 2x) \approx 0$  $\Rightarrow z \approx x^{1/3} (AG)$ 

| Page 9 | Mark Scheme: Teachers' version | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | GCE A LEVEL – May/June 2010    | 9231     | 12    |

#### 11 OR

(i) 
$$x = 1$$
  
 $y = 1 + O(1/x)$  as  $|x| \to \infty$   
Second asymptote is  $y = 1$ 

B1

M1

A1

(ii) 
$$x(x+1)/(x-1)^2 = 1 \Rightarrow x = 1/3, y = 1$$
 M1A1 [2]

(iii) (a) 
$$dy / dx = 0 \Rightarrow [(2x+1)(x-1)^2 - 2x(x-1)(x+1)] / (x-1)^4 = 0$$
  
 $\Rightarrow x = 1/3, y = -1/8$ 
M1A1

(b) 
$$dy / dx = -(3x + 1) / (x - 1)^3$$
 M1  
 $\{x : x < -1/3\} \cup \{x : x > 1\}$  A1 $\sqrt{A1}$  ft.

#### (iv) Sketch:

Left-hand branch with approximately correct shape and location and passing through the origin and (-1,0).

B1
Intersection with y = 1 and location of minimum point consistent with results of **(ii)** and **(iii)** (cwo)

B1
Right-hand branch with approximately correct forms at infinity

B1
[3]