FURTHER MATHEMATICS

Paper 9231/01
Paper 1

General comments

The majority of candidates produced good work in response to over 10 questions. There were very few misreads and the rubric infringement of attempting both options of Question 12 appeared in only a small minority of scripts. Some candidates may have run into time trouble with the final question but the general impression given was that they did all that they could do and that loss of marks was due mainly to elementary errors in the working.

The standard of presentation of work was very Centre dependent. At one extreme, Centres produced large amounts of ideal presentation which was easy to read and very well organised. At the other, there were badly organised and scarcely legible responses. Nevertheless standards in this respect have improved relative to that of last year, and no doubt this aspect of candidate work goes some way to explaining why, this year, there were fewer substandard scripts.

Topics which appeared to be only partially understood, at least in some Centres, were induction, curve sketching, both in cartesian and polar coordinates, three dimensional vector problems, implicit differentiation up to order 2 and limiting processes. Nevertheless, apart from these, the remaining syllabus topics which featured in this paper appear to have been very well understood.

Comments on Individual Questions

Question 1

The majority of candidates answered this question correctly. They took the most direct route in that they could see at once that the eigenvalues could be obtained simply by reading off the elements of the leading diagonal. Such a procedure is not valid in general, but is valid in situations where all the elements below (or above) the leading diagonal are zero. In contrast, there were those who first obtained the characteristic equation and then solved for the eigenvalues, «. This unnecessary complication, usually accurately resolved, must have wasted large amounts of examination time.

The obtaining of the eigenvectors generated some suboptimal responses in that laborious and badly organised work proliferated. A simple method here, adopted by a minority, is to evaluate, for each value of <, the vector product of any 2 rows of the matrix $\mathbf{A}-<\mathbf{I}$. In this respect, a common error was to evaluate vector products of columns.

Answers: 1, 2, 3; $\binom{1}{0},\binom{1}{0},\left(\begin{array}{c}9 \\ 0 \\ 0\end{array}\right) j$.

$$
\left(\right)
$$

From here both parts of the question can be answered immediately. However, there were many arithmetic errors in the working so that complete success was achieved only by a minority.

Those who worked with equations did less well mainly because their algebra was badly organised. The syllabus does not demand a knowledge of the concept of the echelon form but nevertheless, it is clear that its application to problems of this type is more likely to lead to success than the undisciplined implementation of Guassian elimination.

Answer: 10.

Question 6

The formidable appearance of this question did not deter the majority of candidates from finding a simple solution, as suggested by the question itself. One could say that this was the best answered question of the paper.

Most responses began by using the inverse of the relation $y=\frac{4 x+1}{x+1}$, namely $x=\frac{y}{4} \frac{1}{y}$ to transform the given equation into a cubic in y, and for the most part the working was accurate.

The majority wrote S_{n} for the sum of the nth powers of the roots of the new equation (a helpful notational simplification) and proved that $S_{2}=-2 p$ and also that $S_{3}+p S_{1}+3 q=0$ from which the required results can be obtained immediately.

In contrast, a significant minority attempted to express S_{2} and even S_{3} in terms of $\dot{U}+\dagger+\neq, \stackrel{\circ}{U}+\dagger \ddagger+\ddagger \cup \circ$ and $\stackrel{\bullet}{\ddagger} \neq$, where $\dot{\cup}, \dagger$ and \ddagger are the roots of the given cubic equation. Such an error prone strategy, which was seldom implemented with success, must have used up a lot of examination time.

Answers: $p=21, q=47 ; 42,141$.

Question 7

The standard of responses to this question was high, especially in the second part.
The general aspect of the required graph was generaly correct in outline. However, nearly half of all the sketches presented did not show the line $\%=0$ to be a tangent to C at the pole.

The evaluation of the area started in nearly all cases with the correct integral representation. The transformation to the w-domain was usually effected accurately, as was the subsequent integration. Few failed to obtain $\left(w^{2}-2 w+2\right) \mathrm{e}^{w}$ as an integral of $w^{2} \mathrm{e}^{w}$. Nevertheless, the limits of integration were not always made clear and sometimes they were omitted altogether. Moreover, some candidates did not heed the advice of several previous reports, namely that where the answer is given it is essential that all relevant and necessary working is presented.

Question 8

In the first part of the question about half of all candidates started with $v_{1}=4 y^{3} y_{1}$ together with $v_{2}=4 y^{3} y_{2}+12 y^{2} y_{1}^{2}()$ where $v_{n}=\frac{\mathrm{d}^{n} v}{\mathrm{~d} x^{n}}, y_{n}=\frac{\mathrm{d}^{n} y}{\mathrm{~d} x^{n}}$. From these results the given $x-y$ equation can easily be worked into the required x_{v} form. Such a strategy is completely undermined if $v_{2}=4 y^{3} y_{2}+12 y^{2} y_{1}$ is used in place of (*) yet this error, early on in the working, appeared in a substantial minority of scripts.

The rest of the candidature who attempted to obtain results for y_{1} and y_{2} based on $y=v^{1 / 4}$ did markedly less well. The fractional indices caused difficulties for many and some erroneous working was deliberately distorted so as to lead to the new differential equation.

