

General Certificate of Education (A-level) June 2013

Mathematics

MM04

(Specification 6360)

Mechanics 4

Final

Mark Scheme

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aga.org.uk

Copyright © 2013 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
√or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
−x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1(a)	$\int xy \mathrm{d}x = \int_0^1 kx^{1.5} \mathrm{d}x$	M1		Use of $\int xy dx$ or full first principles approach using strips and moments leading to appropriate integral
	$= \int_{0}^{1} \left[\frac{kx^{2.5}}{2.5} \right]$ $= \frac{k}{2.5} = \frac{2k}{5}$	A1		Correct integration and substitution of limits
	$\Rightarrow \overline{x} = \frac{\int xy dx}{\int y dx} = \frac{\frac{2k}{5}}{A} = \frac{2k}{5A}$	A1	3	Printed answer – fully correct justification required
(b)	$\int \frac{1}{2} y^2 \mathrm{d}x = \int_0^1 \frac{k^2 x}{2} \mathrm{d}x$	M1		Use of $\int \frac{1}{2} y^2 dx$ or $\int y^2 dx$ Allow full first principles approach using strips and moments leading to appropriate integral
	$= \left[\frac{k^2 x^2}{4}\right]_0^1$ $= \frac{k^2}{4}$	A1		Correct integration using fully correct integral
	$\Rightarrow \overline{y} = \frac{k^2}{4A}$	A1	3	Correct substitution of limits and division by area to obtain correct answer
(c)	$\frac{2k}{5A} = \frac{k^2}{4A}$	M1		Use of $\overline{x} = \overline{y}$
	$k = \frac{8}{5}$	A1	2	CAO
	Total		8	

Q	Solution	Marks	Total	Comments
2	$(3, 4) \longrightarrow 2$ $(-2, -3) \xrightarrow{5} (2, 0)$ Taking moments about O : $a(2) - 2(4) + 1(3) + 5(3) + 4(2) = 2a + 18$	M1 A2,1		M1 for at least two correct $F \times d$ pairings A1 all pairs correct, A1 all signs correct 2a + 18 seen implies M1A2 If $\mathbf{r} \times \mathbf{F}$ used then award M1 for first correct moment, A1 for each of the others (23 k , 2a k and -5 k)
	Couple magnitude $24 \text{ N}m \Rightarrow C = \pm 24$ $\Rightarrow 2a + 18 = 24 \text{ or } -24$	M1		Forms equation and finds one solution to 'their total moment' = 24
	$\Rightarrow a = 3 \text{ or } -21$	A2,1	6	Both correct values for A2 NB - A1 only possible if both ±24 are considered and one solution is correct
	$a = 3$, $\mathbf{F} = \begin{bmatrix} 7 \\ 0 \end{bmatrix}$	B1F		ft part (a) values – only if both M1s are
	$a = -21$, $\mathbf{F} = \begin{bmatrix} 7 \\ -24 \end{bmatrix}$	B1F	2	scored
	Total		8	

Q	Solution	Marks	Total	Comments
3	On point of sliding:			
	R			
	1			
	P			
	$F \leftarrow \begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$			
	<u> </u>			
	0.4g			
	$ \begin{cases} P = F \\ R = 0.4g \end{cases} P = 0.4g \mu $	B1		Obtaining D in tamps of
	$F = 0.4g \qquad P = 0.4g \mu$ $F = \mu R$			Obtaining P in terms of μ
	$\Gamma = \mu K$			
	Moments about C:			
	P(0.28) + Rx = 0.4g(0.10)	M1		M1 Forming a moment equation at least one term correct
	<u>-</u>	1411		A1 – two terms correct
	$(0.4g\mu)(0.28) + (0.4g)x = 0.4g(0.10)$	A2,1		A2 - all terms correct x , μ only
	$x > 0 \implies x = 0.1 - 0.28 \mu > 0$	M1		Using $x > 0$
	$\mu < \frac{0.1}{0.28} = \frac{10}{28} = \frac{5}{14}$			
	$k = \frac{5}{14}$ or 0.357	A1	6	CAO
	Alternative			
	$F = \mu R$			
	To slide: $R = 0.4g$ $P = 3.92\mu$	(B1)		Obtaining P in terms of μ
	F=P			,
	Consider toppling: P needed			
	Take moments about <i>C</i> to find <i>P</i> :			
	0.4g(0.10) = P(0.28)	(M1A1)		M1 - One side correct, A1 all correct
	1.4 = P	(A1)		A1 - Correct P value
	$P_{\text{sliding}} < P_{\text{toppling}}$			
	Slides before topples $\Rightarrow 3.92 \mu < 1.4$	(M1)		Inequality for μ using $P_{\text{sliding}} < P_{\text{toppling}}$
	$\mu < \frac{1.4}{3.92} = \frac{5}{14} = k$	(A1)	(6)	Accept 0.357 (NB M0 if inequality reversed in equation)
	3.92 14 Total		6	reversed in equation)
L	20002	i	-	I .

Q	Solution	Marks	Total	Comments
4(a)	Using $T_{AC} = T_{BC} = T_1$ and resolving vertically at C to give $2T_1 \cos 60^\circ = x$	B1		Resolves at C to obtain x
	Using $T_{AD} = T_{BD} = T_2$ and resolving vertically at D to give $2T_2 \cos 30^\circ = y$	B1		Resolves at D to obtain y
	Using $T_1 = T_2 = T$ to get $x: y = T: \sqrt{3}T = 1: \sqrt{3}$	M1 A1	4	Uses full symmetry to directly compare expressions and establish ratio stated
(b)	Resolve vertically at A (or B) $T_{AD} \sin 60^{\circ} + T_{AC} \sin 30^{\circ} = 100$ $T \sin 60^{\circ} + T \sin 30^{\circ} = 100$	M1 A1		M1 -Resolving – all terms present A1 - Use of equal tensions
	$T = \frac{100}{\sin 60^\circ + \sin 30^\circ} = 73.2 \text{ N}$	A1	3	Or surd form equivalent, eg $\frac{200}{1+\sqrt{3}}$, $100\sqrt{3} - 100$ etc (CAO)
	Alternative			
	Resolve vertically for system $x + y = 200$ and combines with $y = \sqrt{3}x$ to get $x + \sqrt{3}x = 200$	(M1)		Must write down/establish both equations
	leading to $x = \frac{200}{1 + \sqrt{3}}$ or $y = \frac{200\sqrt{3}}{1 + \sqrt{3}}$	(A1)		Correctly combined to find x or y
	$T_{\rm AC} = \frac{200}{1 + \sqrt{3}} $ from part (a)	(A1)	(3)	$T_{ m AC}$ obtained - CAO
(c)	T T_{AB}			
	$T_{AB} = T_{AC}\cos 30^{\circ} + T_{AD}\cos 60^{\circ}$ $T_{AB} = T\cos 30^{\circ} + T\cos 60^{\circ}$	M1		Resolves horizontally at A – with or without equal tensions
	= 100 N AB is in compression	A1 E1	3	CAO – must be positive
	Total		10	
	Total		10	

Q	Solution	Marks	Total	Comments
5(a)(i)	$20m = \pi a^2 \rho \implies \rho = \frac{20m}{\pi a^2}$	B1		ho and m linked
	Mass of elemental piece = $2\pi x \delta x \rho$	M1		Attempt at mass of elemental piece
	MI of elemental piece = $(2\pi x \delta x \rho)x^2$	A1		Use of mr^2
	MI of disc = $\int_{0}^{a} 2\pi x^{3} \rho dx = \int_{0}^{a} \frac{40mx^{3}}{a^{2}} dx$			Attaunt to internet adapt and first
	$= \left[\frac{40mx^4}{4a^2}\right]_0^a$	m1		Attempt to integrate, dependent on first M1
	$=10ma^2$	A1	5	AG
(ii)	Using the perpendicular axis theorem	E1		Clearly stated
	$MI_{DISCDIA} + MI_{DISCDIA} = 10ma^2$	M1		Forms equation with $10ma^2$
	$MI_{DISCDIA} = 5ma^2$	A1	3	
(b)	$MI_{RODEF} = 2ma^2$	B1		MI of rod EF correct
	$MI_{RODAB} = MI_{RODCD}$ $= \frac{4(2m)a^2}{3} = \frac{8ma^2}{3}$	В1		Rod AB and CD correct
	$MI_{DISC} = MI_{DISCDA} + 20m(2a)^2$	M1		Use of parallel axis, correct form
	$= 5ma^2 + 80ma^2$ $= 85ma^2$	A1		
	$MI_{SIGN} = 2ma^2 + \frac{8ma^2}{3} + \frac{8ma^2}{3} + 85ma^2$	M1		Sum of three rods and disc – axes consistent - must have attempted parallel axis theorem
	$=\frac{277ma^2}{3}$	A1	6	CAO
	Total		14	

Q	Solution	Marks	Total	Comments
6(a)	$4\mathbf{i} + 4\mathbf{k}$	B1	1	
(b)	$\begin{vmatrix} \mathbf{i} & 1 & 2 \\ \mathbf{j} & 0 & 3 \\ \mathbf{k} & 0 & 0 \end{vmatrix} = 3\mathbf{k}$	M1		At least one $\mathbf{r} \times \mathbf{F}$ (or $\mathbf{F} \times \mathbf{r}$) correct
	$\begin{vmatrix} \mathbf{i} & 1 & 2 \\ \mathbf{j} & 1 - 3 \\ \mathbf{k} & 0 & 0 \end{vmatrix} = -5\mathbf{k}$ $\begin{vmatrix} \mathbf{i} & 0 & 0 \end{vmatrix}$			
	$\begin{vmatrix} \mathbf{j} & 0 & -1 \\ \mathbf{k} & 1 & 2 \end{vmatrix} = \mathbf{i}$ $\begin{vmatrix} \mathbf{i} & 0 & 0 \\ \mathbf{j} & 1 & 1 \end{vmatrix} = \mathbf{i}$	A2,1		A1 three correct – all four correct for A2
	$\begin{vmatrix} \mathbf{k} & 1 & 2 \end{vmatrix}$ $Total = 2\mathbf{i} - 2\mathbf{k}$	m1 A1	5	Totalling their four determinants – dependent on first M1(max 3/5 for $\mathbf{F} \times \mathbf{r}$)
(c)	$\mathbf{P} = -4\mathbf{i} - 4\mathbf{k}$	B1F		ft part (a): $-1 \times$ their answer from (a)
	$Moment = -2\mathbf{i} + 2\mathbf{k}$	B1F		ft part (b): $-1 \times$ their answer from (b) Moment can be implied by appropriate sum equal to 0
	Coords = $(0, y, 0)$			
	Hence $\begin{vmatrix} \mathbf{i} & 0 & -4 \\ \mathbf{j} & y & 0 \\ \mathbf{k} & 0 & -4 \end{vmatrix} = -2\mathbf{i} + 2\mathbf{k}$	M1		Forming an $\mathbf{r} \times \mathbf{F}$ equation using their \mathbf{P} , point on y -axis and their moment
	k 0 -4	A1		Fully correct equation
	Determinant = $-4y\mathbf{i} + 4y\mathbf{k}$	A1F		Their $\mathbf{r} \times \mathbf{F}$ evaluated but \mathbf{j} component must be 0
	$\therefore y = \frac{1}{2}$			
	Coords at $\left(0, \frac{1}{2}, 0\right)$	A1	6	CSO
	Total		12	

Q	Solution	Marks	Total	Comments
7(a)	Ratio of masses = $3:1$ so G divides CB in ratio $1:3$	M1		Or $\left(\sum m\right)\overline{X} = \left(\sum mX\right)$
	$\Rightarrow CG = \frac{1}{4}(4a) = a$	A1	2	Printed answer
(b)	$MI_{ROD} = \frac{3m(4a)^2}{3} = 16ma^2$	M1		Attempt to total MI of rod and particle
	$MI = m(4a)^2 = 16ma^2$	A1		Correct MI of particle
	$Total = 32ma^2$	A1	3	Total correct – printed answer
(c)(i)	KE gained = $\frac{1}{2}I\dot{\theta}^2$			
	$= \frac{1}{2}(32ma^2)\dot{\theta}^2 = 16ma^2\dot{\theta}^2$	B1		Correct KE obtained
	PE lost = $mgh = 4mg a \sin \theta$	B1		Correct PE obtained
	Conservation of energy			
	$\Rightarrow 16ma^2\dot{\theta}^2 = 4mga\sin\theta$	2.54		
	4mg asin A	M1		Equation formed – conservation of energy
	$\Rightarrow \dot{\theta}^2 = \frac{4mg \ a \sin \theta}{16ma^2}$			
	$\Rightarrow \dot{\theta}^2 = \frac{g \sin \theta}{4a}$			
	$\Rightarrow \dot{\theta}^2 = \frac{g \sin \theta}{4a}$ $\Rightarrow \dot{\theta} = \sqrt{\frac{g \sin \theta}{4a}}$	A1	4	Printed answer – must show convincing steps of cancelling/simplification
(ii)	Differentiating $2\dot{\theta}\ddot{\theta} = \frac{g\cos\theta\dot{\theta}}{4a}$	M1		Differentiating or equivalent
	$\ddot{\theta} = \frac{g\cos\theta}{8a}$	A1	2	Alternative: use of $C = I\ddot{\theta}$
				$I\ddot{\theta} = 4mga\cos\theta$ M1
				$\ddot{\theta} = \frac{4mga\cos\theta}{32ma^2} = \frac{g\cos\theta}{8a} A1$
(iii)	$\frac{X}{\theta}$			
	$4mg$ $a\ddot{\theta}$			
	Perp to rod: $4mg\cos\theta - Y = 4ma\ddot{\theta}$	M1A1		M1 structurally and dimensionally correct A1 – fully correct
	$Y = 4mg\cos\theta - \frac{mg}{2}\cos\theta = \frac{7mg\cos\theta}{2}$	A1		CSO
	Parallel to rod $X - 4mg \sin \theta = 4ma \dot{\theta}^2$	M1A1		M1 structurally and dimensionally correct A1 – fully correct
	$X = 4mg\sin\theta + mg\sin\theta = 5mg\sin\theta$	A1	6	CSO
	Total		17 75	
	TOTAL		75	