| Centre Number | | | Candidate Number | | | |---------------------|--|--|------------------|--|--| | Surname | | | | | | | Other Names | | | | | | | Candidate Signature | | | | | | General Certificate of Education Advanced Level Examination June 2013 # **Mathematics** MFP3 **Unit Further Pure 3** Monday 10 June 2013 9.00 am to 10.30 am #### For this paper you must have: • the blue AQA booklet of formulae and statistical tables. You may use a graphics calculator. #### Time allowed • 1 hour 30 minutes #### Instructions - Use black ink or black ball-point pen. Pencil should only be used for drawing. - Fill in the boxes at the top of this page. - Answer all questions. - Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin. - You must answer each question in the space provided for that question. If you require extra space, use an AQA supplementary answer book; do **not** use the space provided for a different question. - Do not write outside the box around each page. - Show all necessary working; otherwise marks for method may be lost. - Do all rough work in this book. Cross through any work that you do not want to be marked. ### Information - The marks for questions are shown in brackets. - The maximum mark for this paper is 75. #### **Advice** - Unless stated otherwise, you may quote formulae, without proof, from the booklet. - You do not necessarily need to use all the space provided. ## Answer all questions. Answer each question in the space provided for that question. 1 It is given that y(x) satisfies the differential equation $$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{f}(x, y)$$ where $$f(x, y) = (x - y)\sqrt{x + y}$$ and $$y(2) = 1$$ Use the improved Euler formula $$y_{r+1} = y_r + \frac{1}{2}(k_1 + k_2)$$ where $k_1 = hf(x_r, y_r)$ and $k_2 = hf(x_r + h, y_r + k_1)$ and h = 0.2, to obtain an approximation to y(2.2), giving your answer to three decimal places. (5 marks) | QUESTION
PART
REFERENCE | Answer space for question 1 | |---|-----------------------------| ••••• | | | •••••• | | | • | | | QUESTION
PART
REFERENCE | Answer space for question 1 | |---|-----------------------------| | ••••• | | | ••••• | | | ••••• | •••••• | | | •••••• | | | •••••• | | | ••••• | | | •••••• | | | ••••• | | | • | | The Cartesian equation of a circle is $(x+8)^2 + (y-6)^2 = 100$. Using the origin O as the pole and the positive x-axis as the initial line, find the polar equation of this circle, giving your answer in the form $r = p \sin \theta + q \cos \theta$. (4 marks) | QUESTION
PART
REFERENCE | Answer space for question 2 | |-------------------------------|-----------------------------| | ••••• | | | ••••• | | | ••••• | | | ••••• | | | ••••• | | | ••••• | | | ••••• | | | ••••• | | | ••••• | | | ••••• | | | ••••• | | | ••••• | | | ••••• | | | ••••• | | | ••••• | | | ••••• | | | •••••• | | | •••••• | | | •••••• | | | ••••• | | | ••••• | | | | | | QUESTION
PART
REFERENCE | Answer space for question 2 | |-------------------------------|-----------------------------| | REFERENCE | ••••• | ••••• | | | | | | ••••• | ••••• | ••••• | ••••• | | | | | | | | | | | 3 (a) Find the values of the constants a, b and c for which $a + bx + cxe^{-3x}$ is a particular integral of the differential equation $$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} - 3y = 3x - 8e^{-3x}$$ (5 marks) - (b) Hence find the general solution of this differential equation. (3 marks) - (c) Hence express y in terms of x, given that y = 1 when x = 0 and that $\frac{dy}{dx} \to -1$ as $x \to \infty$. | QUESTION
PART
REFERENCE | Answer space for question 3 | |-------------------------------|-----------------------------| | | | | | | | | | | ••••• | QUESTION
PART
REFERENCE | Answer space for question 3 | |-------------------------------|-----------------------------| | ••••• | | | ••••• | | | ••••• | | | ••••• | | | ••••• | | | ••••• | | | ••••• | | | ••••• | | | | | | ••••• | | | ••••• | | | ••••• | | | ••••• | | | ••••• | | | ••••• | | | •••••• | | | •••••• | | | •••••• | | | •••••• | | | ••••• | | | •••••• | | | | | | | | | ••••• | | | | | | QUESTION
PART
REFERENCE | Answer space for question 3 | |-------------------------------|-----------------------------| | | | | | | | •••••• | | | ••••• | •••••• | | | | | | | | | | | | | | | | | | ••••• | | | ••••• | | | ••••• | | | | | | QUESTION
PART
REFERENCE | Answer space for question 3 | |-------------------------------|---------------------------------| | | | | | | | | | | •••••• | | | •••••• | | | ••••• | | | | | | | | | | | | | | | •••••• | | | | | | | | | | | | | | | | | | ••••• | •••••• | | | •••••• | | | •••••• | | | | | | | | | | | | • • • • • • • • • • | ••••••••••••••••••••••••••••••• | **4** Evaluate the improper integral $$\int_0^\infty \left(\frac{2x}{x^2 + 4} - \frac{4}{2x + 3} \right) \mathrm{d}x$$ showing the limiting process used and giving your answer in the form $\ln k$, where k is a constant. (6 marks) | QUESTION | Anguran angga fan arrastian A | |-------------------------------|-------------------------------| | QUESTION
PART
REFERENCE | Answer space for question 4 | | ••••• | | | | | | | | | | | | | | | ••••• | | | | | | | | | | | | | | | | | | ••••• | | | | | | | | | | | | | | | | | | ••••• | | | | | | | | | | | | | | | , | | | ••••• | | | | | | QUESTION
PART
REFERENCE | Answer space for question 4 | |---|-----------------------------| | ••••• | | | ••••• | | | ••••• | | | ••••• | | | ••••• | | | ••••• | | | ••••• | | | ••••• | | | ••••• | | | | | | ••••• | | | ••••• | | | ••••• | | | •••••• | | | | | | •••••• | | | ••••• | | | | | | ••••• | | | ••••• | | | ••••• | | | ••••• | | | ••••• | | | ••••• | | | • | | - **5 (a)** Differentiate ln(ln x) with respect to x. (1 mark) - (b) (i) Show that $\ln x$ is an integrating factor for the first-order differential equation $$\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{1}{x \ln x} y = 9x^2, \quad x > 1$$ (2 marks) (ii) Hence find the solution of this differential equation, given that $y = 4e^3$ when x = e. (6 marks) | QUESTION
PART
REFERENCE | Answer space for question 5 | |-------------------------------|-----------------------------| QUESTION
PART
REFERENCE | Answer space for question 5 | |-------------------------------|-----------------------------| ••••• | | | ••••• | | | | | | 6 | | It is given that $y = (4 + \sin x)^{\frac{1}{2}}$. | | |-------------------------------|------------|--|-----------| | (a | 1) | Express $y \frac{dy}{dx}$ in terms of $\cos x$. | (2 marks) | | (b |)) | Find the value of $\frac{d^3y}{dx^3}$ when $x = 0$. | (5 marks) | | (с | ;) | Hence, by using Maclaurin's theorem, find the first four terms in the expans | sion, in | | | | ascending powers of x, of $(4 + \sin x)^{\frac{1}{2}}$. | (2 marks) | | QUESTION
PART
REFERENCE | Ans | wer space for question 6 | | | •••••• | | | | | •••••• | | | | | •••••• | | | | | •••••• | | | | | ••••• | | | | | | | | | | | | | | | ••••• | | | ••••• | | ••••• | QUESTION
PART
REFERENCE | Answer space for question 6 | |-------------------------------|-----------------------------| 7 A differential equation is given by $$\sin^2 x \frac{d^2 y}{dx^2} - 2\sin x \cos x \frac{dy}{dx} + 2y = 2\sin^4 x \cos x, \quad 0 < x < \pi$$ (a) Show that the substitution $$y = u \sin x$$ where u is a function of x, transforms this differential equation into $$\frac{\mathrm{d}^2 u}{\mathrm{d}x^2} + u = \sin 2x \tag{5 marks}$$ (b) Hence find the general solution of the differential equation $$\sin^2 x \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - 2\sin x \cos x \frac{\mathrm{d}y}{\mathrm{d}x} + 2y = 2\sin^4 x \cos x$$ giving your answer in the form y = f(x). (6 marks) | QUESTION
PART
REFERENCE | Answer space for question 7 | |-------------------------------|-----------------------------| QUESTION
PART
REFERENCE | Answer space for question 7 | |-------------------------------|-----------------------------| QUESTION
PART
REFERENCE | Answer space for question 7 | |-------------------------------|-----------------------------| | | | | | | | •••••• | | | | | | | | | | | | | | | | | | •••••• | | | •••••• | ••••• | | | ••••• | | | •••••• | | | | | | | | | | | | QUESTION
PART
REFERENCE | Answer space for question 7 | |---|-----------------------------| | ••••• | | | ••••• | | | ••••• | | | ••••• | | | ••••• | | | ••••• | | | ••••• | | | ••••• | | | ••••• | | | ••••• | | | ••••• | | | ••••• | | | ••••• | | | •••••• | | | | | | •••••• | | | ••••• | | | | | | ••••• | | | ••••• | | | ••••• | | | ••••• | | | •••••• | | | ••••• | | | • | | 8 The diagram shows a sketch of a curve and a circle. The polar equation of the curve is $$r = 3 + 2\sin\theta$$, $0 \le \theta \le 2\pi$ The circle, whose polar equation is r = 2, intersects the curve at the points P and Q, as shown in the diagram. - (a) Find the polar coordinates of P and the polar coordinates of Q. (3 marks) - (b) A straight line, drawn from the point P through the pole O, intersects the curve again at the point A. - (i) Find the polar coordinates of A. (2 marks) - (ii) Find, in surd form, the length of AQ. (3 marks) - (iii) Hence, or otherwise, explain why the line AQ is a tangent to the circle r=2. (2 marks) - Find the area of the shaded region which lies inside the circle r=2 but outside the curve $r=3+2\sin\theta$. Give your answer in the form $\frac{1}{6}(m\sqrt{3}+n\pi)$, where m and n are integers. | QUESTION | | |-----------|-----------------------------| | PART | Answer space for question 8 | | REFERENCE | QUESTION
PART
REFERENCE | Answer space for question 8 | |-------------------------------|-----------------------------| ••••• | | | ••••• | QUESTION
PART
REFERENCE | Answer space for question 8 | |-------------------------------|-----------------------------| | | | | | | | | | | | | | | | | ••••• | ••••• | | | | | | | | | | | | ••••• | | | | | | | | | | | | | | | | | | QUESTION
PART
REFERENCE | Answer space for question 8 | |-------------------------------|-----------------------------| | •••••• | | | | | | ••••• | | | •••••• | | | | | | •••••• | | | •••••• | | | ••••• | | | ••••• | | | ••••• | ••••• | | | | | | | END OF QUESTIONS |