## General Certificate of Education ## Mathematics 6360 MS2B Statistics 2B # Mark Scheme ### 2006 examination - June series Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner. It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper. #### **Key To Mark Scheme And Abbreviations Used In Marking** | M | mark is for method | | | | | | |----------------------------|--------------------------------------------------------------------|-------------------------|----------------------------|--|--|--| | m or dM | mark is dependent on one or more M marks and is for method | | | | | | | A | mark is dependent on M or m marks and is for accuracy | | | | | | | В | mark is independent of M or m marks and is for method and accuracy | | | | | | | Е | mark is for explanation | mark is for explanation | | | | | | | | | | | | | | $\sqrt{\text{or ft or F}}$ | follow through from previous | | | | | | | | incorrect result | MC | mis-copy | | | | | CAO | correct answer only | MR | mis-read | | | | | CSO | correct solution only | RA | required accuracy | | | | | AWFW | anything which falls within | FW | further work | | | | | AWRT | anything which rounds to | ISW | ignore subsequent work | | | | | ACF | any correct form | FIW | from incorrect work | | | | | AG | answer given | BOD | given benefit of doubt | | | | | SC | special case | WR | work replaced by candidate | | | | | OE | or equivalent | FB | formulae book | | | | | A2,1 | 2 or 1 (or 0) accuracy marks | NOS | not on scheme | | | | | –x EE | deduct x marks for each error | G | graph | | | | | NMS | no method shown | c | candidate | | | | | PI | possibly implied | sf | significant figure(s) | | | | | SCA | substantially correct approach | dp | decimal place(s) | | | | | | | | | | | | #### No Method Shown Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme. Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**. Where a question asks the candidate to state or write down a result, no method need be shown for full marks. Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**. Otherwise we require evidence of a correct method for any marks to be awarded. #### MS2B | NIS2B | Q.1 | | | ~ . | |--------|---------------------------------------------------------|------------|-------|--------------------------| | Q | Solution | Marks | Total | Comments | | 1(a) | For a 1-year period | | | | | | The number of A grades $\sim Po(3)$ | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | For a 5-year period | | | | | | Number of A grades $\sim Po(15)$ | B1 | | | | | | | | | | | P(Total A-grades > 18) | | | | | | $=1-(Total \le 18)$ | M1 | | | | | =1-0.8195 | | | | | | = 0.1805 | | | | | | = 0.181 | <b>A</b> 1 | 3 | AWFW 0.180 to 0.181 | | | | | | | | (b)(i) | V . V . D (10) | B1 | | | | | $X + Y \sim PO(10)$ | DI | | | | | $X + Y \sim \text{Po}(10)$<br>$P(X + Y \le 14) = 0.917$ | M1A1 | 3 | AWFW 0.916 to 0.917 incl | | | $I(A + I \le 14) = 0.917$ | WITAI | 3 | AWT W 0.910 to 0.917 mer | | (ii) | <i>X</i> and <i>Y</i> are independent variables. | E1 | 1 | | | | Total | | 7 | | | 2(a) | $\overline{x} = \frac{254}{5} = 50.8$ | B1 | | | | | 5 | B1 | | | | | s = 4.55 | DI | | | | | v = 5 - 1 = 4 | B1 | | | | | $v = 5 - 1 = 4$ $t_{\text{crit}} = 2.776$ | B1 | | | | | | | | | | | 95% confidence interval | | | | | | 4.55 | | | | | | $= 50.8 \pm 2.776 \times \frac{4.55}{\sqrt{5}}$ | M1√ | | ft their values | | | $=50.8 \pm 5.648$ | | | | | | =(45.2,56.4) | <b>A</b> 1 | 6 | | | (b) | 0.05 | B1 | 1 | | | | Total | | 7 | | | 3(a) $E(R) = \sum_{\text{all } r} P(R = r)$ $= \left(1 \times \frac{7}{16}\right) + \left(2 \times \frac{5}{16}\right) + \left(3 \times \frac{3}{16}\right) + \left(4 \times \frac{1}{16}\right)$ $= \frac{30}{16}$ $= 1\frac{7}{8}$ $E(R^2) = \sum_{\text{all } r} r^2 P(R = r)$ $= \frac{70}{16} \text{ or } 4\frac{3}{8}$ $Var(R) = 4\frac{3}{8} - \left(1\frac{7}{8}\right)^2$ $= \frac{220}{256} \text{ or } \frac{55}{64}$ $32 \times \frac{1}{4} = 8$ (ii) $= \left(32 \times \frac{7}{16} \times \frac{1}{5}\right) + \left(32 \times \frac{5}{16} \times \frac{1}{2}\right) + 8 \times \frac{9}{10}$ $= (32 \times 17 1$ | Q Q | Solution | Marks | Total | Comments | |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|------------| | $= \frac{70}{16} \text{ or } 4\frac{3}{8}$ $Var(R) = 4\frac{3}{8} - \left(1\frac{7}{8}\right)^{2}$ $= \frac{220}{256} \text{ or } \frac{55}{64}$ $32 \times \frac{1}{4} = 8$ $= \left(32 \times \frac{7}{16} \times \frac{1}{5}\right) + \left(32 \times \frac{5}{16} \times \frac{1}{2}\right) + 8 \times \frac{9}{10}$ $= 2.8 + 5 + 7.2$ B1 $(4.375)$ $A1$ $4$ $(0.859375)$ $B1$ $1$ $A0 \text{ if these numbers rounded before}$ | | $E(R) = \sum_{\text{all } r} P(R = r)$ $= \left(1 \times \frac{7}{16}\right) + \left(2 \times \frac{5}{16}\right) + \left(3 \times \frac{3}{16}\right) + \left(4 \times \frac{1}{16}\right)$ $= \frac{30}{16}$ | | | | | $= \frac{220}{256} \text{ or } \frac{55}{64}$ A1 $4 (0.859375)$ (b)(i) $32 \times \frac{1}{4} = 8$ B1 $1$ $= \left(32 \times \frac{7}{16} \times \frac{1}{5}\right) + \left(32 \times \frac{5}{16} \times \frac{1}{2}\right) + 8 \times \frac{9}{10}$ $= 2.8 + 5 + 7.2$ A0 if these numbers rounded before | | | B1 | | (4.375) | | (b)(i) $32 \times \frac{1}{4} = 8$ B1 $= \left(32 \times \frac{7}{16} \times \frac{1}{5}\right) + \left(32 \times \frac{5}{16} \times \frac{1}{2}\right) + 8 \times \frac{9}{10}$ $= 2.8 + 5 + 7.2$ B1 A0 if these numbers rounded before | | | | 4 | (0.859375) | | $= \left(\frac{32 \times \frac{1}{16} \times \frac{1}{5}}{16} + \left(\frac{32 \times \frac{1}{16} \times \frac{1}{2}}{16} \times \frac{1}{10}\right) + 8 \times \frac{1}{10}$ $= 2.8 + 5 + 7.2$ A0 if these numbers rounded before | (b)(i) | | | | | | | (ii) | $= \left(32 \times \frac{1}{16} \times \frac{1}{5}\right) + \left(32 \times \frac{1}{16} \times \frac{1}{2}\right) + 8 \times \frac{1}{10}$ | M1 | | 40.04 | | Total 7 | | =15 | A1 | | | | MS2B (cont) | | Solution | | 3.6 | TD ( ) | <b>C</b> . | |-------------|------------------------------------------------|------------------|----------------------------------------|-------|----------|----------------------------------------| | Q | | | Marks | Total | Comments | | | 4(a)(i) | Γ. | | | | | | | | A | | Total | | | | | | 22-34 2 | | 53 | B1 | | for A values | | | 35-39 7 | | 108 | B1 | 2 | for B values | | | 40-59 2 | | 39 | DI | 2 | 101 B values | | | Total 12 | 0 80 | 200 | | | | | | - | · | | | | | | (ii) | | | | | | | | | H <sub>0</sub> : no associa | ation between | n area | | | | | | and age p | rofile | | B1 | | At least H <sub>0</sub> | | | H <sub>1</sub> : associatio | n between ar | ea | | | , | | | and age | | | | | | | | and age 1 | prome | | | | | | | | | | | | | | | | , | | | | | | | | | $(O_i - E_i)^2$ | M1 | | Attempt at Row & Column totals | | | $O_i$ | $\mathbf{E}_{i}$ | $\frac{\left(O_i - E_i\right)^2}{E_i}$ | M1 | | Attempt at $E_i$ | | | | | 21 | M1 | | Attempt at $\frac{(O_i - E_i)^2}{E_i}$ | | | 24 | 31.8 | 3.6679 | 1711 | | Attempt at $\frac{E_i}{E_i}$ | | | 72 | 64.8 | 0.8000 | | | t . | | | 24 | 23.4 | 0.5538 | M1 | | Attempt at $\chi^2$ | | | 32 | 21.2 | 5.5019 | | | 1 Mempe we X | | | 36 | 43.2 | 1.2000 | | | | | | 12 | 15.6 | 0.8308 | A1 | | AWFW 12.5 to 12.6 provided correct | | | $\sum O_i = 200$ | $\sum E_i = 200$ | $\chi^2 = 12.554$ | | | method used | | | <u> </u> | | | | | | | | v = (3-1)(2- | 1) = 2 | | B1 | | | | | ` /\ | , | | | | | | | v = (3-1)(2-1)(2-1)(2-1)(2-1)(2-1)(2-1)(2-1)(2 | 10 < 12 554 | | B1√ | | ft on their $\nu$ and $\chi^2$ | | | $\chi_{1\%}(2)$ 3.21 | 12.55 | | Biv | | It off then $V$ and $\chi$ | | | Reject H <sub>0</sub> | | | | | | | | reject 11 <sub>0</sub> | | | | | | | | The avidence | cuagacta that | the area within | | | | | | | | eems to have ar | , | | | | | effect on the a | | | E1 | 9 | ft on $\chi^2$ and calculated value | | | employed. | 50 proffic of | iii suii | | | depends on $H_0$ correct, if stated | | | p.0 j <b>vu</b> . | | | | | depends on 110 correct, it stated | | (b) | | | aff employed in | | | | | | 22 - 34 age gro | oup than expe | ected in | | | | | | school A | | | E1 | | | | | and more than | expected in | | E1 | 2 | | | | | | Tota | ıl | 13 | | | MS2B (cont) | | | | ~ | |-------------|-----------------------------------------------------------------------|-------|-------|------------------------------------------------| | Q | Solution | Marks | Total | Comments | | 5(a)(i) | $E(X) = \frac{1}{2}b$ | В1 | 1 | | | (ii) | $E(X^2) = \int_0^b \frac{1}{b} x^2 dx$ | M1 | | | | | $=\frac{1}{b}\left[\frac{x^3}{3}\right]_0^b$ | A1 | | For correct integration | | | $=\frac{1}{b}\left(\frac{b^3}{3}\right)$ | | | | | | $=\frac{1}{3}b^2$ | A1 | | OE | | | $\operatorname{Var}(X) = \frac{1}{3}b^2 - \left(\frac{b}{2}\right)^2$ | m1 | | Depending on using integration to get $E(X^2)$ | | | $= \frac{1}{3}b^2 - \frac{1}{4}b^2$ | | | | | | $=\frac{1}{12}b^2$ | A1 | 5 | AG | | (b) | P( T > 0.02) = 1 - P(-0.02 < T < 0.02) | M1 | | | | | $=1-0.04\times5$ | M1 | | | | | = 0.8 | A1 | 3 | | | | Total | | 9 | | | MS2B (cont) | | 3.6 | 7D ( ) | | |-------------|----------------------------------------------------------------------------------------------------------------------|----------|--------|--------------------------------------------------------------------| | Q | Solution | Marks | Total | Comments | | 6(a) | $\overline{x} = \frac{471}{5} = 94.2$ | B1 | | | | | s = 6.058 | B1 | | $Or s^2 = 36.7$ | | | v = 4 1-tailed test | B1 | | | | | $t_{\rm crit} = -2.132$ | B1 | | Or on diagram | | | $H_0: \mu = 100$<br>$H_1: \mu < 100$ | B1 | | | | | $t = \frac{94.2 - 100}{6.058 / \sqrt{5}} = -2.14$ | M1A1 | | $\frac{\text{their } \bar{x} - 100}{(\text{their } s) / \sqrt{5}}$ | | | Reject H <sub>0</sub> at 5% level of significance | A1√ | | On their <i>t</i> and critical value | | | Evidence at the 5% level of significance to support the members' belief that the batteries last less than 100 hours. | E1√ | 9 | | | (b) | $\overline{x} = \frac{8080}{80} = 101$ | | | | | | $s^2 = \frac{6399}{79} = 81$ (or $\frac{6399}{80} = 79.9875$ )<br>s = 9 (or $s = 8.944$ ) | В1 | | For $s(\text{or } s^2)$ and $\bar{x}$ | | | $H_0: \mu = 100$<br>$H_1: \mu \neq 100$ | В1 | | | | | $\bar{X} \sim N \left(100, \frac{81 \text{ (or } 79.9875)}{80}\right) \text{ under H}_0$ | B1 | | Or 100, $\frac{9}{\sqrt{80}}$ used | | | $z = \frac{101 - 100}{9 / \sqrt{80}} = 0.99$ | M1<br>A1 | | Allow use of t method<br>AWFW 0.99 to 1.00 (allow 1) | | | 2-tailed test $z_{\text{crit}} = \pm 1.96$ | B1 | | Or $z = 1.96$ | | | Accept $H_0$ at 5% level of significance. | A1√ | | On their $z$ and critical value Or $t$ | | | Sufficient evidence at the 5% level of significance to support the manufacturer's belief. | E1√ | 8 | | | | Total | | 17 | | | B1 for line segment $(0,0.2)$ to B1 for lone segment $(0,0.2)$ to B1 for lone segment $(0,0.2)$ to B1 for correctly shaped curve $(1,0.6)$ to $(4,0)$ (b)(i) for $0 \le x \le 1$ F(x) = $\int_{-\pi}^{x} \frac{1}{5}(2x+1) dx$ M1 Ignore limits | 0 (1,0.6) | |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------| | $F(x) = \int_{0}^{x} \frac{1}{5} (2x+1) dx$ M1 Ignore limits | | | | | | $F(x) = \int_{0}^{x} \frac{1}{5} (2x+1) dx$ $= \left[ \frac{1}{5} (x^{2} + x) \right]_{0}^{x}$ A1 Ignore limits Ignore limits | | | $=\frac{1}{5}x(x+1)$ A1 3 | | | (ii) $P(X \le 1) = F(1)$<br>= $\frac{2}{5}$ B1 1 | | | (iii) $P(X \ge x) = \frac{17}{20} \implies F(x) = \frac{3}{20}$ M1 | | | $\frac{1}{5}x(x+1) = \frac{3}{20}$ $x(x+1) = \frac{3}{4}$ $x^2 + x - \frac{3}{4} = 0$ A1 | | | $x^2 + x - \frac{3}{4} = 0$ A1 | | | $ \left( x - \frac{1}{2} \right) \left( x + \frac{3}{2} \right) = 0 $ m1 Any valid method attempted | | | (iv) $\begin{vmatrix} x = \frac{1}{2} \\ \text{Since } F(1) = 0.4, \ q \text{ lies in } 0 \le r \le 1 \end{vmatrix}$ A1 5 CAO | | | $F(q) = \frac{1}{5}(q^2 + q) = 0.25$ M1 | | | $\Rightarrow q^2 + q = 1.25$ $q^2 + q - 1.25 = 0$ A1 | | | $\Rightarrow q = \frac{-1 \pm \sqrt{1 - 4 \times (-1.25)}}{2}$ m1 | | | $q = \frac{1}{2}(\sqrt{6} - 1)$ $(q > 0)$ A1 4 AWFW (0.724 to 0.725) | | | Total 15 TOTAL 75 | |