

GCE MARKING SCHEME

ELECTRONICS AS/Advanced

SUMMER 2015

© WJEC CBAC Ltd.

INTRODUCTION

The marking schemes which follow were those used by WJEC for the Summer 2015 examination in GCE ELECTRONICS. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.

	Page
ET1	1
ET2	6
ET4	9
ET5	14

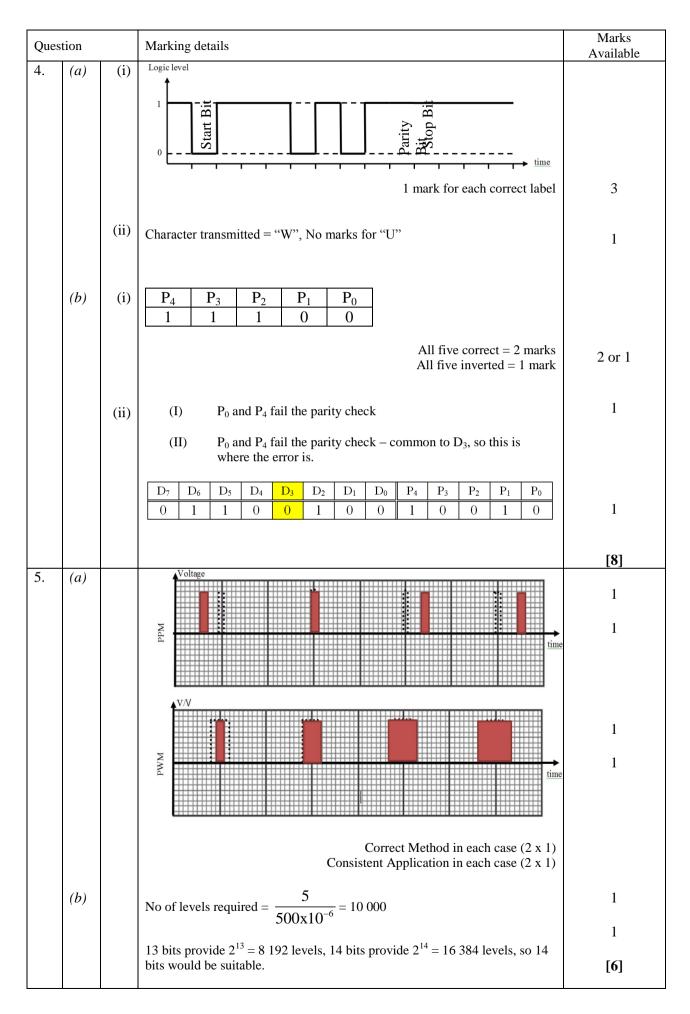
Q	Juestia	n			N	/Iarkin	g det:	ail		Marks available
1.	(a)		One mark for each correct column X, Y and Q no ecf							
				В	Α	2	K	Y	Q	
				0	0	()	1	0	
				0	1	1	l	1	1	3
				1	0	1	1	1	1	5
				1	1	1	l	0	0	
	(b)		Correct N	NAND ga	ate replac	cement	for OR	R gate dr	awn.	1
										4
2.	(a)	(i)			C	В	Α	Q		
2.	(u)	(1)			0	0 0	0	0	-	
					0	0	1	0		
					0	1	0	1		
					0	1	1	0		
					1	0	0	1	_	
					1	0	1	0	_	
					1	1	0	1 0	_	
					1	1	1	U		
		(ii)							mark only	2
			$Q = \overline{C}.I$ (one error)					orrect si	mplification	2
	(b)		By alteri power ra		onnectio	ons bet	ween	the D in	puts <u>and the</u>	1
										5

Q	uestion	Marking detail	Marks available
3.	(a)	Output Logic 1 between first falling-edge of A and first-rising edge of B	1
		Output logic 1 when A is logic 0 for final time. (-1 mark for each additional transition up to a maximum of 2 marks)	1
	(b)	EXNOR, XNOR	1
			3
4.	(a)	To keep the input X at logic 1 when switch A is open. (accept 'it acts as a pull-up resistor')/ To prevent short-circuit of power rails.	1
	(b)	Y = [logic] 0	1
	(c)	Inputs from switches to NOR gate Output of NOR and Pulses to AND gate Output of AND gate to Q (Possible alternative OR then NOR)	1 1 1
			5

Q	Question		Marking detail	Marks available
5.	(a)	(i)	$\overline{C} . 0 = 0$	1
		(ii)	$D + \overline{D} = 1$	1
	(b)		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	(c)		Correct map Two groups of 4 and one of 2 identified (ecf map) Any correct term from groups identified on the map Simplest overall expression $Q = \overline{D}.C + C.A + \overline{D}.B.\overline{A}$ $Q = (B.A) + \overline{A}$ 1 mark (DeMorgan) $B + \overline{A}$ 1 mark (simplification) Alternative solution: $\overline{(\overline{B} + \overline{A}).A} = \overline{\overline{B}.A} = B + \overline{A}$	1 1 1 1 2
				8
6.	(a)	(i) (ii)	Binary 11101101 BCD 0010 0011 0111	1 1
	(b)		Band D selected and connected to logic gate inputs Single AND gate chosen with output to R	1 1
				4

Q	uestio	n	Marking detail	Marks available
7	(a)		$\overline{\mathbf{Q}} = [\text{logic}] 1$	1
	(b)		 Q responds correctly to: Clock/data (3 correct = 2 marks, 2 correct = 1 mark) Reset Set (-1 mark for each additional transition up to a maximum of 2 marks) 	2 1 1
				5
8.	(a)		 Q to D × 3 clock inputs correct × 3 Q to resistor/LED × 3 	1 1 1
	(b)		Switch and resistor across power rails with correct orientation. Correct connection of switch unit to 3 resets	1 1
	(c)	(i)	120	1
		(ii)	15 ecf from (c)(i) (i.e. $\frac{1}{8}$ of the answer)	1
				7

Q	uestio	n	Marking detail	Marks available
9.	(a)		 Inverse sloping line through (0,0) Correct gradient (passes through 100, -7.5) Saturation at 18 V × 2 (240, -18) 	1 1 1
	(b)	(i)	BW = 48 k[Hz] or 0.048 M[Hz] or 48 000 [Hz]	1
		(ii)	Horizontal line at gain 75 Sloping line through (48,53) ecf from (b)(i)	1 1
	(c)	(i)	 Operational amplifier with negative feedback resistor drawn correctly Resistor between V_{IN} and inverting input Non-inverting input to 0 V 	1
		(ii)	R_F and R_1 in ratio 75:1 (both 1 k Ω or greater as requested) Correctly assigned and identified on the circuit diagram.	1 1 1
				11
10.	(a)		Voltage gain = 7	1
	(b)		$2.0 \times 10^{12} [\Omega]$ or $2 \text{ T}[\Omega]$	1
	(c)	(i)	$40 \times 9 = 360 \text{ [mV]}$	1
		(ii)	Sine wave of correct frequency and phase Voltage peaks at \pm 360 mV ecf from (c) (i)	1 1
	(d)		$\frac{13.5}{9} = 1.5 \text{ [V]} \text{ or } 1500 \text{ m[V]}$	1
	(e)		$\frac{27}{6} = 4.5 (1 \text{ mark}) \mu \text{s} (1 \text{ mark})$ (unit consistent with number)	2
				8


Q	Question		Answers/Explanatory Notes Indicates that ECF will be allowed from a previous part 	Marks Available
1	a	(i) (ii)	0.5 kΩ (1) 1.5 kΩ (1)	2
	b	(i) (ii) (iii) (iv)	$I_1 = 8 \text{ mA } (1) * \\I_2 = 4 \text{ mA } (1) * \\V_1 = 4 \text{ V } (1) \\V_2 = 8 \text{ V } (1) *$	4 [6]
2.	a	(i) (ii) (iii)	$\begin{split} V_{OC} &= 6.75 V (1) \\ I_{SC} &= 0.069 A (1) \\ R_O &= 97.5 \Omega (1) \end{split} \ \ * \end{split}$	3
	b		Voltage drop across 120Ω resistor = $3V(1)$ Current through 120Ω resistor = $0.025 A(1)$ Minimum value of load resistance = $200\Omega(1)$ *	3
				[6]
3.	a	(i) (ii)	5.5 V (1) 3 V (1) [allow 1 mark if answers reversed]	2
	b	(i)	Resistor connected between i/p and o/p of Schmitt (1)	2
		(ii)	Capacitor connected between 0 V and Schmitt i/p (1) Suitable method (1) Correct values (1) Any combination of R and C with a period of 5 ms	2
			e.g. $R = 1 k\Omega$; $C = 5 \mu F$	[6]
4.	a	(i) (ii) (iii)	Graph 3 (1) Graph 4 (1) Graph 2 (1)	3
	b	(i)	Correct position and symbol for capacitor (1) 3 correct connections (1)	2
		(ii)	16.6V (1)	1
				[6]

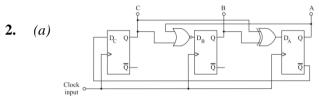
Q	Question		Answers/Explanatory Notes Indicates that ECF will be allowed from a previous part 	Marks Available
5.	a		Correct components in voltage divider (1) Correct orientation (with pull up resistor) (1)	2
	b		Substitution with correct multipliers (1) 5.17 secs (1)	2
	c	(i) (ii)	Voltage across R = 4 V (1) R = $\frac{4}{24\text{mA}}$ = 167 Ω (1) *	3
			180Ω(1) *	[7]
6.	a		Diode in inverse parallel across solenoid (1)	1
	b		Substitution (1) 4.8 V (1) *	2
	c		Substitution (1) 18.72 W (1)	2
				[5]
7.	a	(i)	Appropriate scales (1) Quality of curve (1) At least 5 accurate points (1)	3
		(ii)	4 kΩ (accept $3.8 - 4.2$ kΩ) (1) *	1
	b	(i) (ii)	Two 10 k Ω resistors in voltage divider connected to V- (1) 2.08 V (accept 2– 2.1 V / * allow ecf from a(ii)) (1)	3
		(iii)	LED off : V- larger than V+ (1)	[7]

Question			Answers/Explanatory Notes Indicates that ECF will be allowed from a previous part 	Marks Available
8.	a	(i) (ii)	$I_{B} = \frac{120}{80} = 1.5 \text{ mA (1)}$ Voltage across base resistor = 3.4 - 0.7 = 2.7 V (1) $R = \frac{2.7V}{1.5\text{mA}} = 1.8 \text{ k}\Omega (1) \text{ *}$	3
	b		Shape (1) Plotting point (0.7, 9) (1) Plotting point (3.4, 0) (1)	3
	c	(i) (ii)	$V_{OUT} = 3 \pm 0.5 V (1) *$ 3 V × 80 mA = 240 mW (1)	2
	d		Resistor and LDR in voltage divider (1) LDR at bottom (1)	2
				[10]
9.	a		$\frac{15 - 5.6 = 9.4 \text{ V}(1)}{\frac{9.4}{20}} = 0.47 \text{ A} = 470 \text{ mA}(1)$	2
	b		470 - 6 = 464 mA (1) *	1
	c		Voltage across 20 Ω resistor = 600 mA × 20 Ω = 12 V(1) V _{LOAD} = 3 V (1)	2
	d		Horizontal line at 5.6 V until I = 464 mA (1) * Gradual downward slope thereafter (1)	2 [7]
	I		TOTAL	60

Ques	stion		Marking details	Marks Available
1	(a) (b)		Non-Inverting V_{OUT}/V 15- 10- 5- 0- -5- -10- Saturation Levels at ± 9 V	1
			Switching thresholds at 1 V and 4 V Non-inverting characteristic	1 1
2	(<i>a</i>)	(i)	Amplitude 282 300 318 Frequency Line spectrum Correct carrier frequency Correct side band frequencies Amplitude Frequency Continuous band spectrum	[4] 1 1 1
		(ii)	36 kHz	1

Question			Marking details	Marks Available
2.	(<i>c</i>)	(i) $f_c = \frac{1}{14.28 \times 10^{-6}} = 70\ 000\ \text{Hz} = 70\ \text{kHz}\ (\pm\ 0.2\ \text{kHz})$		1
		(ii)	$f_i = \frac{1}{200 \times 10^{-6}} = 5\ 000\ \text{Hz} = 5\ \text{kHz}$	1
		(iii)	Modulation Depth = $\frac{V_{\text{max}} - V_{\text{min}}}{V_{\text{max}} + V_{\text{min}}} \times 100\%$	
	$=\frac{3-0.4}{3+0.4} \times 100\% = 76.5\% \text{ (Accept 71-77\%)}$		1	
			[8]	
3.	<i>(a)</i>	(i)	Т	1
		(ii)	Q	1
		(iii)	R & S	1
		(iv)	P or R or S	1
	(b)	(i)	Poor Selectivity – The inability to reject nearby stations.	1
		(ii)	Poor Sensitivity – The inability to detect weak stations.	1
	(c)	(i)	1.680 MHz / 2.145 MHz / 3.825 MHz / 0.465 MHz or 465 kHz	
			All 4 Correct = 2 marks 3 Correct = 1 mark	2 or 1
		(ii)	0.465 MHz or 465 kHz	1
				[9]

Question	Marking details	Marks Available
6. (<i>a</i>)	$f_o = \frac{1}{2\pi\sqrt{LC}} = \frac{1}{2\pi\sqrt{0.02 \times 10^{-3} \times 4 \times 10^{-9}}}$ $= 562\ 698\ \text{Hz} \cong 560\ \text{kHz}$	
	multipliers answer	1 1
<i>(b)</i>	$R_D = \frac{L}{r_L C} = \frac{0.02 \times 10^{-3}}{2.5 \times 4 \times 10^{-9}} = 2\ 000\ \Omega = 2\ \mathrm{k}\Omega$	
	correct substitution in correct formula answer	1 1
(c)	$V_{\rm OUT} = \frac{10 \times 2\ 000}{220 + 2\ 000} = 9.01 \rm V$	
	Substitution in formula answer	1 1
(<i>d</i>)	$Q = \frac{2\pi f_o L}{r_L} = \frac{2\pi \times 562\ 698 \times 0.02 \times 10^{-3}}{2.5}$ = 28.3 (28.1 for 560k)	
	bandwidth $= \frac{f_0}{Q} = \frac{562\ 698}{28.3} = 19\ 883$ Hz $= 19.9$ kHz	1
<i>(e)</i>	Q = 28.3 answer only	1
(f)	9.01 V 6.3 V 6.5 K 560 K $^{(kHz)}$ 6.3 V 6.3 V 6.3 V 10.6 Correct for some last to plate	
	 Correct resonant frequencies and use of 0.7 × peak to plot bandwidth (1) 	3
		[11]


Question		Marking details	Marks Available
7.	(a) (b)	$\frac{12 - V_{\rm IN}}{9} = \frac{12 - 1}{6.8}$ $12 - V_{\rm IN} = \frac{9 \times 11}{6.8}$ $12 - V_{\rm IN} = 14.56$ $V_{\rm IN} = 12 - 14.56 = -2.56 \rm V$ correct formula / substitution correct and $\frac{-12 - V_{\rm IN}}{9} = \frac{-12 - 1}{6.8}$ $-12 - V_{\rm IN} = \frac{9 \times -13}{6.8}$ $-12 - V_{\rm IN} = -17.21$ $V_{\rm IN} = -12 + 17.21 = 5.21 \rm V$	1 1
		correct formula / substit correct ar	1 1 [4]

1.	(<i>a</i>)		One count not completely registered before next pulse arrives (or equivalent.)	1 mark
	(b)	(i)	Sa	

$$S_0$$

 S_3
 011
 S_2
 111
 S_2
 111

ot nlataly oor

Completely correct	1 mark
(ii) '001' (only correct answer)	1 mark
(iii) Any unused state, such as '010'	1 mark
(iv) State 5 progresses through '110' to main sequence, or equivalent	1 mark
Timing information	1 mark
State 4 loops back to itself continuously, or equivalent	1 mark
Total for Q1	7

Clock connections correct D_C correct D_B correct D_A correct Use of \overline{Q}

1	mark
1	mark
1	mark
	-

1 mark 1 mark

(b)

	Current state				Next state			
State	Light	Pump	Paddle	Solenoid	Light	Pump	Paddle	Solenoid
0	0	0	0	0	1	0	0	0
1	1	0	0	0	1	1	0	0
2	1	1	0	0	1	1	1	0
3	1	1	1	0	1	0	1	1
4	1	0	1	0	1	0	0	1
5	1	0	0	1	0	0	0	0

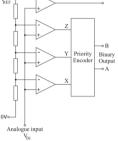
Buzzer correct Pump correct Paddle correct	1	mark mark mark
Solenoid correct	Total for Q2	mark 9

3. (<i>a</i>) (i) Grey code

(a)	(i)	Grey code	1 mark
	(ii)	Binary can give false readings when near segment boundaries/moving between	
		segments causing either false alarms, or missing alarm conditions, or equivalent.	1 mark
(b)		Q = Z. X, or equivalent	
		Correct operator	1 mark

Correct signals 1 mark Any application in which speed is monitored, or equivalent. (*c*) 1 mark

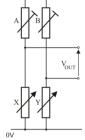
Total for Q3


5

4. (a) (i) vs

V0	
Zener sub-system correct	1 mark
Non-inv amp correct	1 mark
Emitter follower correct	1 mark
(ii) Line regulation keeps output voltage steady when supply voltage varies	1 mark
(iii) As V_c increases voltage across resistor increases	

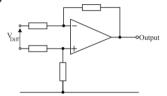
(III) As v_s increases, voltage across	resistor increases,	
but output of zener, and so V_{REF}	F, remains constant, or equivalent	1 mark


(b) (i) _{V_{RE}}

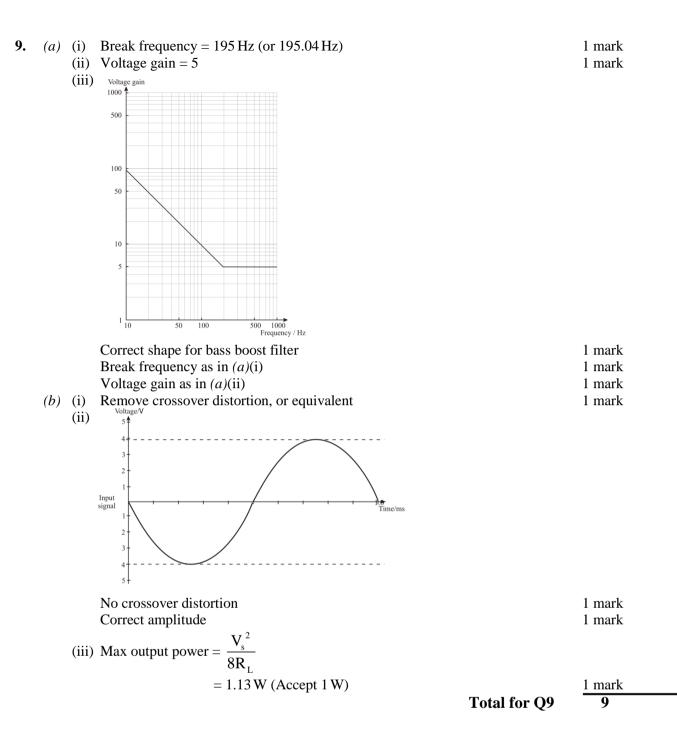
Use of three comparators		1 mark
Correct input and output connections to comparators		1 mark
(ii) All resistor values equal		1 mark
All resistor values >1 k Ω		1 mark
(iii) $V_{\text{REF}} = 1.00 \text{ V}$		1 mark
(iv) $B = 1_2$ $A = 0_2$		1 mark
	Total for Q4	11

5.	(<i>a</i>)	04	goto	warn		1 mark
	<i>(b)</i>	100 warn	movlw	b' 10000000 '		1 mark
		101	movwf	PORTB		1 mark
	(c) (d) (e) (i)		at address 10 gister contair movwf	3 switches off the lamp, or equivalent hs '4' Wstore		1 mark 1 mark
		107	movf	Wstore,0		
			correct use	of Wstore		1 mark
			correct dest	ination		1 mark
	(ii)	Flag indicat	tes that interr	upt has been serviced or equivalent		1 mark
				ſ	Fotal for Q5	8

6. (*a*)



+12V


mark mark
mark

(c) (i)

(b)

			Inverting input at mid-point of voltage divider as shown		1 mark	
			Non-inverting input at mid-point of voltage divider as shown		1 mark	
		(ii)	Correct ratio of feedback to input resistor, AND values > 1 k Ω		1 mark	
			Values symmetrical on inverting and non-inverting inputs		1 mark	
		(iii)	$Output = 200 \times 3.5 = 700 \mathrm{mV}$		1 mark	
			Total for	r Q6	8	
7.	(<i>a</i>)	(i)	A, F, H			
			All three conditions, and no others		1 mark	
		(ii)	С			
			All three conditions (and no other)		1 mark	
	<i>(b)</i>	(i)	X = 12 V AND Y = 12 V		1 mark	
		(ii)	X = 0 V AND Y = 12 V		1 mark	
		(iii)	I $X = -12 V AND Y = 0 V$		1 mark	
			II Reverse biases the thyristor, causing it to switch off, or equivalent		1 mark	
			Total for	r Q7	6	
8.	(a)	(i)	Signal 4		1 mark	
		(ii)	Signal 5		1 mark	
		(iii)	Signal 2		1 mark	
	(b)	(i)	Diac		1 mark	
		(ii)	C		1 mark	
	(c)		Phase shift = $\tan^{-1}\left(\frac{R}{Xc}\right)$		1 mark	
			Evidence of correct interpretation of multipliers and/or X _C			
			$= 88.4^{0}$		1 mark	
			Total for	r Q8	7	

GCE Electronics MS Summer 2015/ED

WJEC 245 Western Avenue Cardiff CF5 2YX Tel No 029 2026 5000 Fax 029 2057 5994 E-mail: <u>exams@wjec.co.uk</u> website: <u>www.wjec.co.uk</u>