шјес cbac

GCE MARKING SCHEME

ELECTRONICS AS/Advanced

SUMMER 2015

INTRODUCTION

The marking schemes which follow were those used by WJEC for the Summer 2015 examination in GCE ELECTRONICS. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.
Page
ET1 1
ET2 6
ET4 9
ET5 14

ET1

Question		Marking detail	Marks available
3.	(a)	Output Logic 1 between first falling-edge of A and first-rising edge of B Output logic 1 when A is logic 0 for final time. (-1 mark for each additional transition up to a maximum of 2 marks) EXNOR, XNOR	1
4.	(a)	To keep the input X at logic 1 when switch A is open. (accept 'it acts as a pull-up resistor')/ To prevent short-circuit of power rails. Y= [logic] 0 Inputs from switches to NOR gate Output of NOR and Pulses to AND gate Output of AND gate to Q (Possible alternative OR then NOR)	1
(c)		1	

Question			Marking detail	Marks available
5.	(a) (b) (c)	(i) (ii)	$\begin{aligned} & \bar{C} .0=0 \\ & \mathrm{D}+\overline{\mathrm{D}}=1 \end{aligned}$ Correct map Two groups of 4 and one of 2 identified (ecf map) Any correct term from groups identified on the map Simplest overall expression $\begin{aligned} & \mathrm{Q}=\overline{\mathrm{D}} \cdot \mathrm{C}+\mathrm{C} \cdot \mathrm{~A}+\overline{\mathrm{D}} \cdot \mathrm{~B} \cdot \overline{\mathrm{~A}} \\ & \mathrm{Q}=(\mathrm{B} \cdot \mathrm{~A})+\overline{\mathrm{A}} \\ & \mathrm{~B}+\overline{\mathrm{A}} \\ & 1 \mathrm{mark} \\ & 1 \text { (DeMorgan) } \end{aligned} \quad \begin{aligned} & \text { (simplification) } \end{aligned}$ Alternative solution: $\overline{(\overline{\mathrm{B}}+\overline{\mathrm{A}}) \cdot \mathrm{A}}=\overline{\overline{\mathrm{B}} \cdot \mathrm{~A}}=\mathrm{B}+\overline{\mathrm{A}}$	1 1 1 1 1 2
				8
6.	(a) (b)	(i) (ii)	Binary 11101101 BCD 001000110111 Band D selected and connected to logic gate inputs Single AND gate chosen with output to R	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
				4

Question			Marking detail	Marks available
7	(a) (b)		$\overline{\mathrm{Q}}=[\text { logic }] \mathbf{1}$ Q responds correctly to: - Clock/data (3 correct $=2$ marks, 2 correct $=1$ mark) - Reset - Set (-1 mark for each additional transition up to a maximum of 2 marks)	$\begin{aligned} & 1 \\ & 2 \\ & 1 \\ & 1 \end{aligned}$
				5
8.	(a) (b) (c)	(i) (ii)	- $\overline{\mathrm{Q}}$ to $\mathrm{D} \times 3$ - clock inputs correct $\times 3$ - Q to resistor/LED $\times 3$ Switch and resistor across power rails with correct orientation. Correct connection of switch unit to 3 resets 120 15 ecf from (c)(i) (i.e. $\frac{1}{8}$ of the answer)	1 1 1 1 1 1 1
				7

Question			Marking detail	Marks available
9.	(a) (b) (c)	(i) (ii) (i) (ii)	- Inverse sloping line through $(0,0)$ - Correct gradient (passes through 100, -7.5) - Saturation at $18 \mathrm{~V} \times 2(240,-18)$ $B W=48 \mathrm{k}[\mathrm{Hz}]$ or $0.048 \mathrm{M}[\mathrm{Hz}]$ or $48000[\mathrm{~Hz}]$ Horizontal line at gain 75 Sloping line through $(48,53)$ ecf from (b)(i) - Operational amplifier with negative feedback resistor drawn correctly - Resistor between $\mathrm{V}_{\text {IN }}$ and inverting input - Non-inverting input to 0 V R_{F} and R_{1} in ratio 75:1 (both $1 \mathrm{k} \Omega$ or greater as requested) Correctly assigned and identified on the circuit diagram.	1 1 1 1
				11
10.	(a) (b) (c) (d) (e)	(i) (ii)	Voltage gain $=7$ $2.0 \times 10^{12}[\Omega]$ or $2 \mathrm{~T}[\Omega]$ $40 \times 9=360[\mathrm{mV}]$ Sine wave of correct frequency and phase Voltage peaks at $\pm 360 \mathrm{mV}$ ecf from (c) (i) $\frac{13.5}{9}=1.5[\mathrm{~V}] \text { or } 1500 \mathrm{~m}[\mathrm{~V}]$ $\frac{27}{6}=4.5(1 \mathrm{mark}) \mu \mathrm{s}(1 \mathrm{mark})$ (unit consistent with number)	1 1 1 1 1 1 2
				8

ET2

Question			Answers/Explanatory Notes Indicates that ECF will be allowed from a previous	Marks Available
1	a	(i) (ii)	$\begin{array}{\|l\|} \hline 0.5 \mathrm{k} \Omega(1) \\ 1.5 \mathrm{k} \Omega(1) \end{array}$	2
	b	(i) (ii) (iii) (iv)	$\begin{aligned} & \mathrm{I}_{1}=8 \mathrm{~mA} \\ & \mathrm{I}_{2}=4 \mathrm{~mA} \quad(1) \\ & \mathrm{V}_{1}=4 \mathrm{~V} \quad(1) \\ & \mathrm{V}_{2}=8 \mathrm{~V} \quad(1) \end{aligned}$	4 $[6]$
2.	a	(i) (ii) (iii)	$\begin{aligned} & \mathrm{V}_{\mathrm{OC}}=6.75 \mathrm{~V}(1) \\ & \mathrm{I}_{\mathrm{SC}}=0.069 \mathrm{~A}(1) \\ & \mathrm{R}_{\mathrm{O}}=97.5 \Omega(1) \end{aligned}$	3
			Voltage drop across 120Ω resistor $=3 \mathrm{~V}$ (1) Current through 120Ω resistor $=0.025 \mathrm{~A}$ (1) Minimum value of load resistance $=200 \Omega(1)$	3 $[6]$
3.	${ }^{\text {a }}$	(i) (ii)	$\begin{aligned} & 5.5 \mathrm{~V}(1) \\ & 3 \mathrm{~V}(1) \text { [allow } 1 \mathrm{mark} \text { if answers reversed] } \end{aligned}$	2
		(i) (ii)	Resistor connected between i / p and o/p of Schmitt (1) Capacitor connected between 0 V and Schmitt i / p (1) Suitable method (1) Correct values (1) Any combination of R and C with a period of 5 ms e.g. $\mathrm{R}=1 \mathrm{k} \Omega ; \mathrm{C}=5 \mu \mathrm{~F}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$
				[6]
4.	a	(i) (ii) (iii) (i) (ii)	Graph 3 (1) Graph 4 (1) Graph 2 (1)	3
			Correct position and symbol for capacitor (1) 3 correct connections (1) $16.6 \mathrm{~V} \text { (1) }$	2 1
				[6]

Question			Answers/Explanatory Notes Indicates that ECF will be allowed from a previous	Marks Available
8.	a	(i) (ii)	$\mathrm{I}_{\mathrm{B}}=\frac{120}{80}=1.5 \mathrm{~mA}$ Voltage across base resistor $=3.4-0.7=2.7 \mathrm{~V}$ (1) $\mathrm{R}=\frac{2.7 \mathrm{~V}}{1.5 \mathrm{~mA}}=1.8 \mathrm{k} \Omega(1) *$	3
	b		Shape (1) Plotting point $(0.7,9)(1)$ Plotting point $(3.4,0)(1)$	3
	c d	(i) (ii)	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=3 \pm 0.5 \mathrm{~V}(1)^{*} \\ & 3 \mathrm{~V} \times 80 \mathrm{~mA}=240 \mathrm{~mW} \end{aligned}$	2
	d		Resistor and LDR in voltage divider (1) LDR at bottom (1)	2
				[10]
9.	a		$\begin{aligned} & 15-5.6=9.4 \mathrm{~V}(1) \\ & \frac{9.4}{20}=0.47 \mathrm{~A}=470 \mathrm{~mA} \\ & 470-6=464 \mathrm{~mA}(1) * \end{aligned}$ Voltage across 20Ω resistor $=600 \mathrm{~mA} \times 20 \Omega=12 \mathrm{~V}(1)$ $\mathrm{V}_{\mathrm{LOAD}}=3 \mathrm{~V}(1)$ Horizontal line at 5.6 V until $\mathrm{I}=464 \mathrm{~mA}$ (1)* Gradual downward slope thereafter (1)	2
	b			1
	c			2
	d			2
				[7]
TOTAL				60

Question			Marking details	Marks Available
2.	(c)	(i)	$f_{c}=\frac{1}{14.28 \times 10^{-6}}=70000 \mathrm{~Hz}=70 \mathrm{kHz}(\pm 0.2 \mathrm{kHz})$	1
		(ii)	$f_{i}=\frac{1}{200 \times 10^{-6}}=5000 \mathrm{~Hz}=5 \mathrm{kHz}$	1
		(iii)	$\begin{aligned} & \text { Modulation Depth }=\frac{V_{\max }-V_{\min }}{V_{\max }+V_{\min }} \times 100 \% \\ & =\frac{3-0.4}{3+0.4} \times 100 \%=76.5 \%(\text { Accept } 71-77 \%) \end{aligned}$	1
				[8]
3.	(a)	(i)	T	1
		(ii)	Q	1
		(iii)	R \& S	1
		(iv)	P or R or S	1
	(b)(c)	(i)(ii)	Poor Selectivity - The inability to reject nearby stations.	1
			Poor Sensitivity - The inability to detect weak stations.	1
		(i)	$\begin{aligned} & 1.680 \mathrm{MHz} / 2.145 \mathrm{MHz} / 3.825 \mathrm{MHz} / 0.465 \mathrm{MHz} \text { or } 465 \mathrm{kHz} \\ & \text { All } 4 \text { Correct }=2 \text { marks } \\ & 3 \text { Correct }=1 \text { mark } \end{aligned}$	
	(c)			2 or 1
		(ii)	0.465 MHz or 465 kHz	1
				[9]

ET5

1. (a)

One count not completely registered before next pulse arrives (or equivalent.)
1 mark
(b) (i)

Completely correct
(ii) ' 001 ' (only correct answer)
(iii) Any unused state, such as ' 010 '
(iv) State 5 progresses through ' 110 ' to main sequence, or equivalent Timing information
State 4 loops back to itself continuously, or equivalent
Total for Q1
1 mark
1 mark
1 mark
1 mark
1 mark
1 mark
7
2. (a)

Clock connections correct
1 mark
D_{C} correct
1 mark
D_{B} correct
1 mark
D_{A} correct
1 mark
Use of \bar{Q}
1 mark
(b)

	Current state				Next state			
State	Light	Pump	Paddle	Solenoid	Light	Pump	Paddle	Solenoid
0	0	0	0	0	1	0	0	0
1	1	0	0	0	1	1	0	0
2	1	1	0	0	1	1	1	0
3	1	1	1	0	1	0	1	1
4	1	0	1	0	1	0	0	1
5	1	0	0	1	0	0	0	0

Buzzer correct
1 mark
Pump correct
1 mark
Paddle correct
1 mark
Solenoid correct
Total for Q2
3. (a) (i) Grey code

1 mark
(ii) Binary can give false readings when near segment boundaries/moving between
segments causing either false alarms, or missing alarm conditions, or equivalent. 1 mark
(b) $\quad \mathrm{Q}=\mathrm{Z} . \mathrm{X}$, or equivalent

Correct operator 1 mark
Correct signals
(c) Any application in which speed is monitored, or equivalent.

1 mark
1 mark
4. (a) (i)

Zener sub-system correct
Non-inv amp correct
Emitter follower correct
(ii) Line regulation keeps output voltage steady when supply voltage varies

1 mark
1 mark
1 mark
1 mark
(iii) As V_{S} increases, voltage across resistor increases, but output of zener, and so $\mathrm{V}_{\text {REF }}$, remains constant, or equivalent

1 mark
(b) (i)

Use of three comparators
Correct input and output connections to comparators
(ii) All resistor values equal

All resistor values $>1 \mathrm{k} \Omega$
(iii) $\mathrm{V}_{\text {REF }}=1.00 \mathrm{~V}$
(iv) $\mathrm{B}=1_{2} \quad \mathrm{~A}=0_{2}$

Total for Q4

Total for Q5

1 mark
1 mark
1 mark
1 mark
1 mark
1 mark
11

1 mark
1 mark
1 mark
1 mark
1 mark

1 mark
1 mark
1 mark
6. (a)

Two voltage dividers each having strain gauge and variable resistor Correct orientation / use of correct symbols
(b) Both strain gauges warm up equally. Both increase in resistance equally.

Produces same change in output of each voltage divider.
Changes cancel each other out, (or equivalent.)
(c) (i)

Inverting input at mid-point of voltage divider as shown
Non-inverting input at mid-point of voltage divider as shown
(ii) Correct ratio of feedback to input resistor, AND values $>1 \mathrm{k} \Omega$

Values symmetrical on inverting and non-inverting inputs
(iii) Output $=200 \times 3.5=700 \mathrm{mV}$

Total for Q6
7. (a) (i) A, F, H

All three conditions, and no others
(ii) C

All three conditions (and no other)
(b) (i) $\mathrm{X}=12 \mathrm{~V}$ AND $\mathrm{Y}=12 \mathrm{~V}$
(ii) $\mathrm{X}=0 \mathrm{~V}$ AND $\mathrm{Y}=12 \mathrm{~V}$
(iii) I $X=-12 \mathrm{~V}$ AND $Y=0 \mathrm{~V}$

II Reverse biases the thyristor, causing it to switch off, or equivalent
Total for Q7
8. (a) (i) Signal 4
(ii) Signal 5
(iii) Signal 2
(b) (i) Diac
(ii) C
(c) Phase shift $=\tan ^{-1}\left(\frac{\mathrm{R}}{\mathrm{Xc}}\right)$

Evidence of correct interpretation of multipliers and/or X_{C} $=88.4^{0}$

1 mark

1 mark
1 mark

1 mark
1 mark
1 mark
1 mark
1 mark

8

1 mark

1 mark
1 mark
1 mark
1 mark
1 mark
6
1 mark
1 mark
1 mark
1 mark
1 mark
1 mark

1 mark
9. (a) (i) Break frequency $=195 \mathrm{~Hz}$ (or 195.04 Hz)

1 mark
1 mark

1 mark
1 mark
1 mark
1 mark

1 mark
1 mark

1 mark

WJEC
245 Western Avenue
Cardiff CF5 2YX
Tel No 02920265000
Fax 02920575994
E-mail: exams@wjec.co.uk website: www.wjec.co.uk

