$\frac{\text { WJEC }}{\text { CBAC }}$

GCE MARKING SCHEME

ELECTRONICS
 AS/Advanced

JANUARY 2014

INTRODUCTION

The marking schemes which follow were those used by WJEC for the January 2014 examination in GCE ELECTRONICS. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.
Page
ET1 1
ET4 6

ET1

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Question} \& Marking details \& \begin{tabular}{l}
Marks \\
Available
\end{tabular} \\
\hline 1 \& \begin{tabular}{l}
(a) \\
(b)
\end{tabular} \& \begin{tabular}{l}
(i) \\
(ii) \\
(i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
AND gate \\
NOR gate \\
EXOR \\
Correct symbol for EXOR gate ecf from (i)
\end{tabular} \& \[
\begin{aligned}
\& 1 \\
\& 1 \\
\& 1
\end{aligned}
\] \\
\hline \& \& \& \& [4] \\
\hline 2 \& \begin{tabular}{l}
(a) \\
(b)
\end{tabular} \& \begin{tabular}{l}
(i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& \mathrm{L}=\overline{(\mathrm{A}+\mathrm{B})} \quad \text { or } \overline{\mathrm{A}} \cdot \overline{\mathrm{~B}}(1) \\
\& \mathrm{M}=\overline{\mathrm{B} \cdot \overline{\mathrm{C}}} \text { or } \overline{\mathrm{B}}+\mathrm{C}(1)
\end{aligned}
\] \\
\(\mathrm{Q}=\overline{\mathrm{A}} \cdot \overline{\mathrm{B}}+\overline{\mathrm{B}} \cdot \mathrm{C}\) or \(\overline{(\mathrm{A}+\mathrm{B})}+\overline{\mathrm{B}} \cdot \mathrm{C}(1)\) need dot between first A and B \\
Correct replacement NOT and AND by NAND (both required) (1) \\
Correct replacement NOR by NAND (1) \\
Correct replacement OR by NAND (1) \\
Two correct redundancies clearly identified
\end{tabular} \& 3

3
3

\hline \& \& \& \& [8]

\hline
\end{tabular}

Question			Marking details	Marks Available
4	(a) (b) (c)	(i) (ii)	$\begin{aligned} & \mathrm{A}+1=\mathbf{1} \\ & \overline{\mathrm{C}} . \mathrm{D}+\mathrm{C}=\mathbf{C}+\mathbf{D} \end{aligned}$ Correct map and minimum groups clearly identified $\mathrm{Q}=\mathrm{C} \cdot \mathrm{~A}+\overline{\mathrm{C}} \cdot \overline{\mathrm{~B}} \cdot \overline{\mathrm{~A}}+\mathrm{D} \cdot \mathrm{C} \cdot \mathrm{~B}$ 1 mark each correct term (ecf map 3 max) Correct Boolean algebra solution $=4$ marks $\begin{array}{ll} \mathrm{Q}=\overline{\overline{(\mathrm{A}+\overline{\mathrm{B}}})}+\overline{\mathrm{B}} & \text { OR } \\ \overline{\overline{(\mathrm{A}} \cdot \mathrm{B})+\overline{\mathrm{B}}} \\ \mathrm{Q}=(\overline{\overline{\mathrm{A}+\overline{\mathrm{B}}}) \cdot \mathrm{B}} & (\mathrm{A}+\overline{\mathrm{B}}) \cdot \mathrm{B} \\ \mathrm{Q}=(\mathrm{A}+\overline{\mathrm{B}}) \cdot \mathrm{B} & \text { A.B }+\overline{\mathrm{B}} \cdot \mathrm{~B} \\ \mathrm{Q}=\mathrm{A} \cdot \mathrm{~B}+\overline{\mathrm{B}} \cdot \mathrm{~B} & \text { A.B } \\ \mathrm{Q}=\mathrm{A} \cdot \mathrm{~B} & \end{array}$ Answer must be consistent with working	1 1 3 3

Question			Marking details	Marks Available
5	(a) (b) (c) (d)	(i) (ii)	Resistor and switch across power rails and centre connected to clock. (1) Correct orientation of components (1) $\overline{\mathrm{Q}}=0$ $\mathrm{Q}=1$ $\mathrm{H}=\mathrm{OFF} \quad \mathrm{T}=\mathrm{ON}$ Both answers needed High enough frequency to make it random/unpredictable/ impossible to cheat (owtte)	2
				[6]
6.	(a) (b)		Time taken for the output to respond to a change in input signal. - B starts at logic 1 (1) - B goes to logic 0 at 45 ns (1) - C is 30 ns notch (1) - C notch between 25 and 55 ns (1) - Q inverted C [pulse] shifted by 10 ns (1)	1 5
				[6]
7.	(a) (b)		5 A \square B \square B and C \square reset C \square D \square One mark for each correct output B and C. D must have the line drawn in	$\begin{aligned} & 2 \\ & 1 \end{aligned}$
				[4]

Question			Marking details	Marks Available
8.	(a) (b) (c) (d)	(i) (ii) (iii) (i) (ii)	Feedback resistor between output and inverting input (1) Non-inverting input connected to sensor. (1) Resistor between inverting input and 0 V (1) - Suitable scales chosen (1) - All points correctly plotted (1) - Suitable lines drawn (diagonal and horizontal lines meeting at a sharp angle, not curved) (1) 8.8 V $5.0 \pm 0.1 \mathrm{~V}$ $7.3 \pm 0.1 \mathrm{~kg}$ for extrapolation to 8.8 V saturation (allow 7.0 as last data point given) $\begin{aligned} & 5 \times 30=150 \mathrm{mV} \\ & \frac{6.0}{0.15}(1)=40 \pm 1 \quad(1) \quad\{\text { using } 6.0 \pm 0.1 \mathrm{~V}\} \end{aligned}$	3 3 1 1 1 1 2
				[12]
9.	(a) (b) (c)	(i) (ii)	$\frac{300}{5}=-60($ minus sign needed $)$ R_{F} and R_{IN} in ratio 60:1 (1) Both resistors $1 \mathrm{k} \Omega$ or greater (1) $\begin{aligned} & \frac{3.2 \times 10^{6}}{40}(1) \\ & 80 \mathrm{k}[\mathrm{~Hz}] ; 0.08 \mathrm{M}[\mathrm{~Hz}] ; 80000(1) \end{aligned}$ $\begin{aligned} & \text { time }=\frac{30}{6.25} \\ & 4.8 \mu \mathrm{~s}(1) \end{aligned}$	2 2 2
				[7]

ET4

| Question |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 7 |

WJEC
$\frac{\text { WJEC }}{\text { CBAC }}$
245 Western Avenue
Cardiff CF5 2YX
Tel No 02920265000
Fax 02920575994
E-mail: exams@wjec.co.uk
website: www.wjec.co.uk

