GCE MARKING SCHEME

ELECTRONICS
 AS/Advanced

JANUARY 2012

INTRODUCTION

The marking schemes which follow were those used by WJEC for the January 2012 examination in GCE ELECTRONICS. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.
UnitET11
ET4 5

ET1

1. (a)

EXOR gate
(b) (i) NAND
(ii)

A	B	$\mathbf{Q}_{\mathbf{1}}$	$\mathrm{Q}_{\mathbf{2}}$	$\mathbf{Q}_{\mathbf{3}}$
0	0	$\mathbf{0}$	1	$\mathbf{0}$
1	0	$\mathbf{1}$	0	$\mathbf{0}$
0	1	$\mathbf{1}$	0	$\mathbf{0}$
1	1	$\mathbf{0}$	0	$\mathbf{1}$

Q_{1} and Q_{3} correct 1 mark each. Allow e.c.f. for Q_{1} from (a)
(c)
$\mathrm{Q}_{1}=\mathrm{A} \oplus \mathrm{B}$ or $\bar{A} \cdot B+A \cdot \bar{B}$
$\mathrm{Q}_{2}=\overline{\mathbf{A} \cdot \mathbf{B}}$ or $\bar{A}+\bar{B}$
$\mathrm{Q}_{3}=\mathrm{A} . \mathrm{B}$ or $\mathbf{A} \oplus \mathbf{B}+\overline{\mathbf{A} \cdot \mathbf{B}}$ (any combination of the above) (1)
(d) AND allow e.c.f. from (b)(ii)
(e) $\quad \mathrm{D}_{3}$ to $5 \mathrm{~V} \quad \mathrm{D}_{0}, \mathrm{D}_{1}$ and D_{2} to 0 V allow e.c.f. from Q_{3} in table
2. (a)
(i) $\mathrm{Q}=\overline{\mathrm{C}} \cdot \mathrm{B} \cdot \overline{\mathrm{A}}+\mathrm{C} \cdot \overline{\mathrm{B}} \cdot \overline{\mathrm{A}}+\mathrm{C} \cdot \mathrm{B} \cdot \overline{\mathrm{A}} \quad$ (one mistake $=1 \mathrm{mark}$)
(ii) Correct map (1 mark)
$\mathrm{Q}=\mathrm{B} \cdot \overline{\mathrm{A}}+\mathrm{C} \cdot \overline{\mathrm{A}}$
(1 mark - 2 correct terms) $=\overline{\mathrm{A}} .(\mathrm{B}+\mathrm{C})$
(1 mark - fully simplified)

OR Correct simplified Boolean solution $=3$ marks
(b)

$$
\mathrm{Q}=\overline{\overline{(\overline{\mathrm{A}}+\mathrm{B})} \cdot \mathrm{A} \cdot \overline{\mathrm{~B}}}
$$

DeMorgan
$\mathrm{Q}=(\overline{\mathrm{A}}+\mathrm{B})+\overline{\mathrm{A} \cdot \overline{\mathrm{B}}}$
DeMorgan $\quad \mathrm{Q}=\overline{\mathrm{A}}+\mathrm{B}+\overline{\mathrm{A}}+\mathrm{B}$ (2 marks by direct method)
Simplify $\quad \mathrm{Q}=\overline{\mathrm{A}}+\mathrm{B}$
3.

Switch X	Switch Y	Input A	Input B	Output Q	State of LED
Open	Open	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{O F F}$
Open	Closed	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{O F F}$
Closed	Open	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	ON
Closed	Closed	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{O F F}$

1 mark each correct column (4) allow e.c.f. on columns Q and LED
4. (a)

Or any other correct alternative
(b) NAND replacement of NOT $x 2$ (1)
NAND replacement of AND x2 (1)
NAND replacement of OR (1)
Allow e.c.f. from part (a)
(c) 2 correct redundancies one mark each
5. (a) (i) BCD 01010011 (1)

Binary 110101 (1)
(ii) Easier to convert to 7-segment display
(b) (i)

Display	A	B	a	b	c	d	e	f	g
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
\mathbf{Z}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$

(ii) NOR gate. Allow e.c.f. from (b)(i). Answer consistent with table.
6. (a) (i) Resets ($\mathrm{Q}=0$) when R is logic $\mathbf{1}$
(ii) Switch and resistor across power rails + correct orientation (1) Correct connection to R (1)
(b) When the D-type is reset the output Q will be at $\operatorname{logic} \mathbf{0}$ and the LED will be $\mathbf{O N}$ (Both answers needed for 1 mark)
(c) \quad Q goes high on rising-edge of X (1)

Q goes low on rising-edge of Reset (1)
$\overline{\mathrm{Q}}$ opposite of Q (1)
7. (a) (i) $14 / 2+1=+8$
(ii) $14 / 8=\mathbf{1 . 7 5} \mathbf{V}$ Allow e.c.f. from (i)
(b)
(i)

$\mathrm{V}_{\text {IN }} / \mathrm{V}$	$\mathrm{V}_{\text {out }} / \mathrm{V}$
-3.0	$\mathbf{- 1 4 . 0}$
-2.0	$\mathbf{- 1 4 . 0}$
-1.0	$\mathbf{- 8 . 0}$
1.0	$\mathbf{8 . 0}$
2.0	$\mathbf{1 4 . 0}$
3.0	$\mathbf{1 4 . 0}$

Correct sign (1)
Correct values. Allow e.c.f. from (a)(i) (1)
(ii) Positive gradient slope through origin (consistent with table) (1)

Line passes through (1.0, 8.0) (consistent with table) (1)
Saturation at 14.0 V (penalise curve) (1)
(c) Increase the input voltage (or value 2.47 V)
8. (a) (i) Resistor between input and inverting input (1)

Feedback resistor between output and inverting input (1)
Non-inverting input connected to 0 V (1)
(ii) R_{F} and $\mathrm{R}_{\text {IN }}$ in ratio $12: 1$ (1)

Both resistors $\geq 1 \mathrm{k} \Omega$ (1)
(b) (i) $\pm 12 \times 80= \pm \mathbf{9 6 0} \mathbf{~ m V}$
(ii) Inverted sine wave of same frequency as signal (1)

Peaks at 960 mV (voltage marked on axis) (1) Allow e.c.f from (b)(i)
(c) $\quad 3 / 12=0.25 \mathrm{MHz}$ or 250 kHz or $250000(\mathrm{~Hz}) \quad 1$
(d) Inverted graph with slew-rate shape on both edges (1)
saturates at -14 V (must be labelled) (1)
correct starting points and gradients (1)
(reaches -14 V saturation at $4.5 \mu \mathrm{~s}$ and 0 V at $11.5 \mu \mathrm{~s}$)

ET4

1. (a) (i) $1.5 \vee \& 3.5 \mathrm{~V}$ (any order)
(ii) $1 \vee \& 9 \mathrm{~V}$ (any order)
(b)

[3]

Switching Thresholds (ecf a(i))	$=1 \mathrm{mark}$
Saturation values $(\mathrm{ecfa} \mathrm{ai}))$	$=1 \mathrm{mark}$
Non inverting action	$=1 \mathrm{mark}$
Question Total	$=\mathbf{5}$ marks

2. (a) Band Pass Filter.
(b)

(c)

(d)

3. (a)

(b) (Germanium) Diode
(c) Variable Capacitor \& Inductor
(d) (i) Poor selectivity is when the radio is unable to reject nearby or adjacent radio
(ii) Poor sensitivity is when the radio is unable to pick up weak signals.
(e) Any four from:

Tuned RF Amplifier / RF Amplifier
Local Oscillator
Mixer
IF Filter
IF Amplifier $\quad 3$ correct blocks $=1$
AF Amplifier $\quad 4$ correct blocks $=2$

Question Total = 7 marks

Correct identification of modulation method $=3 \times 1$ mark Consistent application of method based on input signal $=3 \times 1$ mark
5. (a) High Pass Filter.
(b) $\quad X_{C}=\frac{1}{2 \pi f C}=\frac{1}{2 \pi \times 10 \times 15 \times 10^{-9}}=1.061032 \Omega \approx 1.06 \mathrm{M} \Omega$
(1)
(1)
(c) $106 \Omega($ Accept $\sim 100 \Omega-110 \Omega)$
(d) $\quad f_{b}=\frac{1}{2 \pi R C}$

$$
f_{b}=\frac{1}{2 \pi \times 3.3 \times 10^{3} \times 15 \times 10^{-9}}=3215 \mathrm{~Hz} \approx 3.2 \mathrm{kHz}
$$

(e)

Approx shape for HPF (e.c.f. (a)) $=1$ mark Correct break frequency (at gain $=0.7$) $=1$ mark

Question Total = 8 marks
6. (a) $\mathrm{V}_{\text {REF }}$ is set at 0 V , therefore it does not matter whether $\mathrm{V}_{\text {OUT }}$ is at +12 V or -12 V , the voltage drop across R_{1} is the same.
(b)

$$
I=\frac{12-0}{R_{1}}=\frac{12}{R_{1}} \quad \text { and } \quad I=\frac{0-(-3)}{R_{2}}=\frac{3}{R_{2}}
$$

The current I is the same so we can equate these equations.

$$
\begin{aligned}
& \frac{12}{R_{1}}=\frac{3}{R_{2}} \\
& \frac{12 R_{2}}{3}=R_{1} \\
& 4 R_{2}=R_{1}
\end{aligned}
$$

Or

$$
\begin{align*}
& \mathbf{V}_{\mathbf{R}_{1}}: \mathbf{V}_{\mathbf{R}_{2}} \\
& 12: 3 \\
& 4: 1 \\
& \therefore \mathbf{R}_{1}: \mathbf{R}_{2} \\
& \therefore 4: 1 \\
& \mathbf{R}_{1}=\ldots .40 \mathrm{k} \ldots \ldots . \\
& \tag{3}
\end{align*}
$$

Calculation of ratio $=2$ marks Correct resistors $>1 \mathrm{k}=1$ mark
(a) (i) Block $X=$ Sampling Gate
(ii) Block Y $=$ Analogue to Digital Converter
(b) (i) $\quad 2^{12}=4096$ levels
(ii) Period $=1 /$ frequency $=1 / 16000=0.0625 \mathrm{~ms}$ or $62.5 \mu \mathrm{~s}$.
(iii) 60 bits must be transmitted in $62.5 \mu \mathrm{~s}$ (1)

1 bit $=62.5 \mu \mathrm{~s} / 60=1.04 \mu \mathrm{~s}(1)$
Min frequency $=\frac{1}{\mathrm{~T}}=\frac{1}{1.0416 \mu \mathrm{~s}}=960061 \mathrm{~Hz} \approx 960 \mathrm{kHz}$ (1)

Or

$$
\begin{aligned}
\text { Number of channels } & =\frac{\text { sampling period }}{\text { No of bits } \times \text { PISO Period }} \\
5 & =\frac{62.5 \mu \mathrm{~s}}{12 \times \text { PISO Period }} \\
\text { PISO Period } & =\frac{62.5 \times 10^{-6}}{5 \times 12} \\
\text { PISO Frequency } & =\frac{5 \times 12}{62.5 \times 10^{-6}} \\
\text { PISO Frequency } & =960 \mathrm{kHz}
\end{aligned}
$$

Question Total = 7 marks

8. (a) (i) Parity Bit $=1$
(ii)

Correct graph $=2$ marks $/$ Data reversed $=1$ mark 3 correct labels $=2$ marks $/ 2$ correct labels $=1$ mark $/ 1$ correct label $=0$ mark
(b) (i) $\mathrm{P}_{4}=$ \qquad $\mathrm{P}_{3}=$ 1....... $\mathrm{P}_{2}=$ \qquad ..1.... $\mathrm{P}_{1}=$ \qquad $\mathrm{P}_{0}=\ldots . . .0 \ldots . .$.

All 5 correct $=2$ marks 4 correct $=1$ mark
(ii)

D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	P_{4}	P_{3}	P_{2}	P_{1}	P_{0}
1	1	0	1	1	0	0	1	1	1	0	1	0

P_{1}, P_{3} and P_{4} fail, therefore the error is in D_{6} as this is the only bit common to these three parity bits.

WJEC
245 Western Avenue
Cardiff CF5 2YX
Tel No 02920265000
Fax 02920575994
E-mail: exams@wjec.co.uk
website: www.wjec.co.uk

