$\frac{\text { WJEC }}{\text { CBAC }}$

GCE MARKING SCHEME

ELECTRONICS
 AS/Advanced

SUMMER 2014

INTRODUCTION

The marking schemes which follow were those used by WJEC for the Summer 2014 examination in GCE ELECTRONICS. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.
Page
ET1 1
ET2 5
ET4 9
ET5 14

ET1

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Question} \& Marking details \& Marks Available

\hline 3. \& (a)
(b)

a \& \begin{tabular}{l}
(i)

(ii)

 \&

$\overline{\mathrm{A}} .1=\overline{\mathrm{A}}$

B. $\overline{\mathrm{B}}+\mathrm{A} \cdot \mathrm{B}+\overline{\mathrm{A}} \cdot \overline{\mathrm{B}}+\overline{\mathrm{A}} \cdot \mathrm{A}$

(1) correctly expanded brackets

$\mathrm{A} \cdot \mathrm{B}+\overline{\mathrm{A}} \cdot \overline{\mathrm{B}}(1)$

Three groups correctly identified (two 4's, one 2) (1) Any correct term from groups identified. (1) Simplest overall expression (1) ecf $\overline{\mathrm{C}} . \mathrm{B}+\mathrm{C} . \overline{\mathrm{B}}+(\mathrm{D} . \mathrm{B} . \overline{\mathrm{A}}$ or D.C. $\overline{\mathrm{A}})$

$$
\begin{array}{llll}
\mathrm{Q}=\overline{\overline{\mathrm{A}} \cdot \overline{\mathrm{~B}} \cdot \mathrm{~A}+\overline{\mathrm{A}} \cdot \overline{\mathrm{~B}} \cdot \overline{\mathrm{~B}}} & \text { (1) } & \text { OR } & (\overline{\overline{\mathrm{A}} \cdot \overline{\mathrm{~B}}})+(\overline{\mathrm{A}+\overline{\mathrm{B}}}) \\
\mathrm{Q}=\overline{\overline{\mathrm{A}} \cdot \overline{\mathrm{~B}}} & \text { (1) } & \text { either } \mathrm{A}+\mathrm{B}+\overline{\mathrm{A}} \cdot \mathrm{~B} \text { or } \\
\mathrm{Q}=\mathrm{A}+\mathrm{B} & \text { (1) } & \mathrm{A}+\mathrm{B}(1+\overline{\mathrm{A}}) \\
& & \mathrm{A}+\mathrm{B}
\end{array}
$$

Note: 1 mark for correct answer, 2 independent marks for clearly shown correct working similar to above.

 \&

2

3
\end{tabular}

\hline \& \& \& \& [9]

\hline 4. \& | (a) |
| :--- |
| (b) |
| (c) | \& | (i) |
| :--- |
| (ii) |
| (i) |
| (ii) | \& | Reset when R is at logic 0 / active low |
| :--- |
| B and C outputs chosen (1) |
| NAND gate used (1) |
| Output of logic gate to reset (1) |
| Display cycles/ changes rapidly (too rapidly to see individual numbers) |
| Display freezes/ stops changing ecf from (b)(i) |
| (Display shows a single number) |
| So that you cannot see individual numbers as it cycles, or equivalent | \& | 3 |
| :--- |
| 1 |
| 1 |

\hline \& \& \& \& [7]

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Question} \& Marking details \& Marks Available

\hline 7. \& (a)
(b)

(c) \& | (i) |
| :--- |
| (ii) | \& \[

$$
\begin{aligned}
& 68 / 1+1=\mathbf{6 9} \\
& 135 \pm 2[\mathrm{kPa}] \\
& \mathrm{V}_{\mathrm{x}}=74 \pm 2[\mathrm{mV}] \text { or implied by working (1) } \\
& 74 \times 69=\mathbf{5 . 1 1} \pm \mathbf{0 . 1 6}[\mathrm{V}] \text { or } \mathbf{5} \mathbf{1 0 6} \pm \mathbf{1 6} \mathrm{m}[\mathrm{~V}] \\
& \left(\text { ecf }(a) \text { and } \mathrm{V}_{\mathrm{x}}\right) \\
& 8.0 / 69=0.1159 \mathrm{~V} \text { or } 115 \mathrm{mV} \text { (accept } 116 \mathrm{mV}) \\
& \begin{array}{l}
\text { (ecf from }(a)) \\
\text { From graph } 115 \mathrm{mV} \equiv 172 \pm 2[\mathrm{kPa}](2) \\
(116 \mathrm{mV} \equiv 174 \pm 2[\mathrm{kPa}])
\end{array}
\end{aligned}
$$

\] \& | 1 |
| :--- |
| 2 |
| 3 |

\hline \& \& \& \& [7]

\hline 8. \& (a)
(b)

(c)
(d)
(e)
(e) \& (i)

(ii) \& \begin{tabular}{l}
Resistor connected between input and inverting input (1)

Variable resistor connected between output and inverting input (1)

Wire connecting non-inverting input and 0 V (1)

Resistances in ratio 60:1 with R_{F} correctly identified (1)

Both resistances $\geq 1 \mathrm{k} \Omega$ (1)

Value for R_{IN} from (b) (i) identified as input impedance

$-9 / 0.2=-45 \quad$ (minus sign needed)

$3.6 \times 10^{6} / 30=120000[\mathrm{~Hz}]$ or $120 \mathrm{k}[\mathrm{Hz}]$ or $0.12 \mathrm{M}[\mathrm{Hz}]$ (substitution 1 mark, answer with multiplier if appropriate 1 mark)

Inverted graph with slew-rate shape on both edges (1) saturates at -12 V (correct position or labelled) (1) correct starting points and gradients (1) (reaches -12 V saturation at $4.5 \mu \mathrm{~s}$ and 0 V at $11.5 \mu \mathrm{~s}$)

 \&

3

2

1

1

2

3
\end{tabular}

\hline \& \& \& \& [12]

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Question} \& Answers/Explanatory Notes \& \begin{tabular}{l}
Marks \\
Available
\end{tabular} \\
\hline 1. \& \begin{tabular}{l}
(a) \\
(b) \\
(c) \\
(d) \\
(e)
\end{tabular} \& \& \begin{tabular}{l}
6 V \\
6 V ecf from (a) \\
6 mA ecf from (\(b\)) \\
\(2 \mathrm{k} \Omega\) ecf from (a) \& (c) \\
\(1 \mathrm{k} \Omega \quad\) ecf from (d) \\
correct use of Ohm's law this can be awarded from parts (a), (c) or (d) (shown by a tick in part (e)
\end{tabular} \& \begin{tabular}{l}
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
[6]
\end{tabular} \\
\hline 2. \& (a)

(b) \& \begin{tabular}{l}
(i)

(ii)

(iii)

(i)

(ii)

 \&

$$
\begin{aligned}
& 6.75 \mathrm{~V}(1) \\
& 0.09 \mathrm{~A}[90 \mathrm{~mA}](1) \\
& 75 \Omega(1) \text { ecf from }(a)(\mathrm{i}) \&(\mathrm{ii})
\end{aligned}
$$

Equiv cct and load with correct values from part (a) (1) voltage drop across $\mathrm{R}_{\mathrm{O}}=0.02 \times 75=1.5 \mathrm{~V}(1)$ voltage drop across load $=6.75-1.5=5.25 \mathrm{~V}$ (1)

[Accept any other method that makes use of equiv cct] [Apply ecf from $(a) \&(b)(\mathrm{i})]$

 \&

3

3

[6]
\end{tabular}

\hline 3. \& (a)
(b)

(c) \& \begin{tabular}{l}
(i)

(ii)

(i)

(ii)

(i)

(ii)

 \&

$$
11.3 \vee(1)
$$

[Unsmoothed] positive half cycle pulses (1)

Accuracy of peak voltage (1)

[Apply ecf from part (i)]

Capacitor in parallel with load (1)

Graph with 50 Hz ripple (1) ecf from (a)(ii)

$$
\begin{aligned}
& 10.6 \mathrm{~V}(1) \\
& 100 \mathrm{~Hz}(1)
\end{aligned}
$$

 \&

3

2

2

[7]
\end{tabular}

\hline
\end{tabular}

Question			Answers/Explanatory Notes	Marks Available
4.	(a) (b) (c)		Substitution/multipliers (1) Answer in range 32.43 to 32.58 s (1) Substitution/multipliers (1) 9.7 V (1) Graph going high at 20 s (1) Graph going low at approx 53 s (1) [Apply ecf from (a)]	2 2 2 [6]
5.	(a) (b) (c)	(i) (ii)	$\mathrm{V}_{\mathrm{IN}}=5 \times 2.3 / 12.3=0.94 \mathrm{~V}$ 3.5 V for increasing output (1) 1 V for decreasing output (1) [Allow 1 mark if answers reversed] Switching threshold at 3 and 4.5 units on time axis $2 \times(1)$ Inverted o/p with amplitude of 5 V [Apply ecf from part (i)] $\begin{aligned} & 3=g_{M} \times 5(1) \\ & g_{M}=0.6 S \end{aligned}$	1 2 3 2

Question			Answers/Explanatory Notes	Marks Available
6.	(a) (b) (c)		Correct labels and shape (1) Correct M/S ratio (1) $\mathrm{R}_{\mathrm{B}}=13 \mathrm{k} \Omega(1)$ Substitution/multipliers (1) $\mathrm{R}_{\mathrm{A}}=26 \mathrm{k} \Omega$ [Apply ecf from (b)]	2 2 1 [5]
7.	(a) (b) (c)	(i) (ii) (iii)	$\begin{aligned} & \text { Voltage across } \mathrm{R}=9 \mathrm{~V} \\ & \mathrm{I}=258 \mathrm{~mA}(1) \\ & \mathrm{R}=9 / 258 \mathrm{~mA}=34.88 \Omega \end{aligned}$ Select 33Ω to allow for 250 mA load current and 8 mA zener current $\begin{aligned} & 3 \mathrm{~V}(1) \\ & 11.5 \mathrm{~V}(1) \\ & \mathrm{P}=11.5^{2} / 33 \\ & =4 \mathrm{~W}(1) \end{aligned}$ [Accept 3.79 W if calculation based on $\mathrm{R}=34.88 \Omega$] [Apply ecf from previous parts]	3 1 4 [8]
8.	(a) (b) (c)	(i) (ii) (i) (ii)	Both points plotted accurately within ± 1 square with graph linear between points (1) $\mathrm{h}_{\mathrm{FE}}=80 \pm 2$ [Apply ecf from an inaccurate graph] (1) Accept answers in range 4.5 V to 4.6 V (1) $\begin{aligned} & 6 \mathrm{~V} \pm 0.5 \mathrm{~V}(1) \\ & \mathrm{V}_{\text {load }}=15-(6 \pm 0.5 \mathrm{~V})=9 \mathrm{~V} \pm 0.5 \mathrm{~V}(1) \\ & \mathrm{IC}=9 / 120=0.075 \mathrm{~A} \quad[75 \mathrm{~mA}](1) \\ & \mathrm{P}=6 \times 0.075=0.45 \mathrm{~W} \end{aligned}$	2 2 3 [7]

Question		Answers/Explanatory Notes	Marks Available
9.	Two resistors greater than $1 \mathrm{k} \Omega$ (1) Ratio resistors 1:3 (1) Larger resistor at top (1) Voltage divider with LDR connected to non inv i/p (1) LDR at bottom (1) Variable resistor (1) Correct transistor and lamp connections (1)	[7]	

ET4

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Question} \& Marking details \& Marks Available

\hline 6. \& (a) \& i)
ii)

i)

ii) \& | Pulse Amplitude Modulation |
| :--- |
| Pulse Width Modulation | \& 1

2
$[6]$

\hline 7. \& (a)
(b)

(c) \& \& | $\text { Minimum frequency }=10 \times 8 \mathrm{kHz}=80 \mathrm{kHz}$ |
| :--- |
| The PISO register must output 10 data bits before the next sample is taken. $\begin{aligned} & \text { resolution }=\frac{6}{2^{10}}=\frac{6}{1024}=5.86 \mathrm{mV} \\ & \begin{array}{r} \text { correct use of } 2^{10}(1) \\ \text { answer }(1) \end{array} \\ & \text { Schmitt trigger - SIPO - DAC - Low Pass Filter } \\ & \text { SIPO Clock } \\ & \text { SIPO Clock }- \text { SIPO }=1 \\ & \text { Schmitt }- \text { SIPO }=1 \\ & \text { SIPO }- \text { DAC }- \text { LPF }=1 \end{aligned}$ | \& 1

1
1
2
2

3
$[7]$

\hline
\end{tabular}

ET5

1. (a)

Main sequence correct
Unused states identified correctly ecf
Unused states lead into main sequence (anywhere)
(b)
$\mathrm{D}_{\mathrm{C}}=\mathrm{B} . \mathrm{A}$
$D_{B}=\underline{A+\bar{C}}$
$\mathrm{D}_{\mathrm{A}}=\overline{\mathrm{C} \cdot \mathrm{B} \cdot \overline{\mathrm{A}}}$ (or equivalents)

1 mark
1 mark
1 mark
1 mark
1 mark
1 mark
Total for Q1
6
2. (a)

	Current Outputs				Next Outputs		
State	\mathbf{C}	\mathbf{B}	\mathbf{A}	$\mathbf{D}_{\mathbf{C}}$	$\mathbf{D}_{\mathbf{B}}$	$\mathbf{D}_{\mathbf{A}}$	
0	0	0	0	1	0	1	
1	1	0	1	1	0	0	
2	1	0	0	1	1	0	
3	1	1	0	0	1	0	
4	0	1	0	0	0	0	
5	0	0	1	1	1	1	
6	0	1	1	0	1	0	
7	1	1	1	0	0	0	

One mark for each correct data input
C B A correct for eight steps
(Main sequence only, and repeated: 1 mark only)
C B A correct for six or seven steps only - 1 mark
$\mathrm{D}_{\mathrm{C}} \mathrm{D}_{\mathrm{B}} \mathrm{D}_{\mathrm{A}} / \mathrm{C}, \mathrm{B}, \mathrm{A}$ structure correct
(b) Unused states - 0 0 1/011/111(ecf)

All
Any two - 1 mark
(c) No stuck states (ecf)

2 marks

1 mark
Total for Q2
3. (a)

bsf	STATUS,RP0
movlw	b '11111'
movwf	TRISA
movlw	b 'XXXX0001
movwf	TRISB
bcf	STATUS,RP0

Correct binary number for TRISA
Correct binary number for TRISB (' X ' = any value)
(b) (i) ISR is labelled 'alarm'
(ii) temp. sensor output connected to bit 6
(iii) Clears interrupt flag / allows further interrupts or equivalents "Bit 1" instead of "....flag": no marks
(d) (iv) LED pulses

Buzzer switches on continuously until switch on PORT A0 is pressed.

1 mark
4. (a) (i) Load regulation - output voltage unaffected by load current / resistance
(ii) Line regulation - output voltage unaffected by supply voltage
(b) (i) Non-inverting input voltage $=10.0 \mathrm{~V}$
(ii) Transistor symbol with base to output of op-amp Correct connections for collector and emitter
(iii) $\mathrm{V}_{\text {OUT }}=12.0 \mathrm{~V}$
(iv) No change to output voltage

Voltage across 180Ω resistor increases to 5.5 V (accept increases)
5. (a) (i) In Gray code, only 1 bit changes at a time. In binary, several bits can change.
(ii) Binary can give false readings when optoswitches cross a segment boundary.
$G=Y$
$\mathrm{A}=\mathrm{X} . \overline{\mathrm{Y}}$
$\mathrm{R}=\overline{\mathrm{X}} \cdot \overline{\mathrm{Y}}($ or $\overline{\mathrm{X}+\mathrm{Y}})$
6. (a) (i) Voltage at X falls
(ii) Voltage at Y falls
(b) (i) Voltage at X falls
(ii) Voltage at Y unchanged
(c) Circuit must amplify the difference in voltage between X and Y , and ignore absolute size of each such as interference spikes.
(d) $\quad \mathrm{V}_{\text {OUT }}=+1.25 \mathrm{~V}$

Wrong sign - subtract one mark
7. (a) (i) Diac - correct circuit symbol in series with gate terminal
(ii) RC network connected correctly with variable resistor
(b) (i) Phase angle $=18^{0}$

Appropriate calculation
(ii) The bigger the phase angle the dimmer the bulbs.
(c) Correct shape during positive half-cycle - triggers at 25 V and on afterwards Correct shape during negative half-cycle - switched off
8. (a) (i) Optimum voltage gain of $\mathrm{P}=10$

Gain of $\mathrm{Q}=100 \div$ gain of P
(ii) Correct bandwidth $=2 \times 10^{5}$ allow ecf from (i)
(iii) Capacitors block any DC component in signal.
(b) (i) Voltage gain $=1$
(ii) Impedance matching between pre-amp and subsequent stage.
9. (a) Correct shape for treble cut filter

Correct low frequency gain $(=20)$
Correct break frequency $(=10 \mathrm{kHz})$
(b) (i) Parallel RC network

RC network in feedback loop and rest of circuit correct
Correct low frequency gain
(ii) Correct capacitor $=0.1 \mathrm{nF}$

Appropriate calculation (ecf)
(c) (i) $\mathrm{V}_{\text {OUT }}=-1.2 \mathrm{~V}$
(ii) Output 0.7 V smaller than $\mathrm{V}_{\text {IN }}$

Horizontal section for $\mathrm{V}_{\text {IN }}$ between +0.7 V and -0.7 V

Total for Q4

Total for Q7

Total for Q8
1 mark

1 mark
1 mark
1 mark
1 mark
1 mark

1 mark
1 mark
1 mark
1 mark
1 mark
2 marks

Total for Q6
on afterwards

1 mark
8

6
1 mark
10. (a) $V_{\text {Out }}=-0.6 \mathrm{~V}$ (wrong sign: no marks)

1 mark
(b) (i) Correct ratio of input resistors $\left(\mathrm{R}_{\mathrm{B}}=150 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{A}}=300 \mathrm{k} \Omega\right)$ 1 mark Feedback resistor $=30 \mathrm{k} \Omega$

1 mark
(ii) Correct circuit for inverting amplifier, with input connected 1 mark Equal values for feedback and input resistors and both $>1 \mathrm{k} \Omega$

WJEC
245 Western Avenue
Cardiff CF5 2YX
Tel No 02920265000
Fax 02920575994
E-mail: exams@wiec.co.uk website: www.wjec.co.uk

