

GCE MARKING SCHEME

ELECTRONICS AS/Advanced

SUMMER 2014

INTRODUCTION

The marking schemes which follow were those used by WJEC for the Summer 2014 examination in GCE ELECTRONICS. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.

	Page
ET1	1
ET2	5
ET4	9
ET5	14

Question			Marking details						Marks Available	
1.	<i>(a)</i>	(i)	EXOR gate							1
		(ii)	Columns Q_1 and Q_3 correct	INP	UTS	0	JTPU	TS		2
				В	Α	Q_1 Q_2 Q_3			-	
				0	0	1	0	1		
				0	1	0	1	1		
				1	0	0	1	1		
				1	1	0	0	0		
	(b)		$Q_{1} = \overline{B}.\overline{A} \text{or} \overline{B} + \overline{A} (1)$ $Q_{2} = B \oplus A \text{or} \overline{B}.\overline{A} + \overline{B}.A (1)$ $Q_{3} = \overline{B}.\overline{A} (\text{or combinations from})$	$Q_{1} = \overline{B}.\overline{A} \text{or} \overline{B+A} (1)$ $Q_{2} = B \oplus A \text{or} \overline{B}.\overline{A} + \overline{B}.A (1)$ $Q_{3} = \overline{B}.\overline{A} (\text{or combinations from above}) (1)$						
	(c)		NAND gate ecf from $(a) \& (b)$							1
	(<i>d</i>)		Multiplexer connections correct. D_3 to 0 V D_0 , D_1 , D_2 to 5 V ecf from (a)	Multiplexer connections correct. D_3 to 0 V D_0 , D_1 , D_2 to 5 V ecf from (a)						1
										[8]
2.	(a)		Correctly drawn logic system us NOT A and NOT B to AND B and A to AND Both AND outputs to OR	Correctly drawn logic system using specified gates only NOT A and NOT B to AND B and A to AND Both AND outputs to OR					1	
	(b)		Correct replacement NOT by NAND (both required) (1) Correct replacement AND by NAND (both required) (1) Correct replacement OR by NAND (1) ecf from (<i>a</i>)						3	
	(c)		Two correct redundancies <i>clearl</i>	y ider	ntified	ecf f	rom (b)		2
										[6]

Question		tion	Marking details	Marks Available
3.	(a)	(i)	$\overline{A} . 1 = \overline{A}$	1
		(ii)	B. \overline{B} + A.B + $\overline{A}.\overline{B}$ + $\overline{A}.A$ (1) correctly expanded brackets A.B + $\overline{A}.\overline{B}$ (1)	2
	(b)		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
			Three groups correctly identified (two 4's, one 2) (1) Any correct term from groups identified. (1) Simplest overall expression (1) ecf $\overline{C}.B + C.\overline{B} + (D.B.\overline{A} \text{ or } D.C.\overline{A})$	3
	(c)		$Q = \overline{\overline{A}.\overline{B}.A + \overline{A}.\overline{B}.\overline{B}} (1) OR (\overline{\overline{A}.\overline{B}}) + (\overline{A + \overline{B}}) (1)$ $Q = \overline{\overline{A}.\overline{B}} (1) \text{either } A + B + \overline{A}.B \text{or}$ $Q = A + B (1) A + B(1 + \overline{A}) (1)$ $A + B (1)$	3
			Note: 1 mark for correct answer, 2 independent marks for clearly shown correct working similar to above.	
				[9]
4.	(a)	(i)	Reset when R is at logic 0 / active low	1
		(ii)	B and C outputs chosen (1) NAND gate used (1) Output of logic gate to reset (1)	3
	(b)	(i)	Display cycles/ changes rapidly (too rapidly to see individual numbers)	1
		(ii)	Display freezes/ stops changing ecf from (<i>b</i>)(i) (Display shows a single number)	1
	(c)		So that you cannot see individual numbers as it cycles, or equivalent	1
				[7]

Question		tion				Markin	ıg detail	S		Marks Available
5.	<i>(a)</i>		Setting Latchi 2 nd ma		$\frac{\overline{R}}{1}$ $\frac{1}{0}$ $\frac{1}{1}$ \frac	Q 0 1 1 0 0 0 ct (lines s 3+5) (1 warded i	Q 1 0 1 2+4) (1 1) if the 1 st) mark is s	awarded	2
	(b)		Resist conne Correc	or and s cted to \overline{S} ct orienta	witch in $\overline{5}$ (1) ation (1)	n series a	across po	ower rail	s with junction	2
	(c)		LED of Use of	correct of \overline{Q} to si	rientatio	on (1) ent (1)				2
										[6]
6.	(a)		$\overline{Q} \text{ connected to } D \times 3 (1)$ then $Q \text{ to clock input on the next IC } \times 2 (1)$ and then outputs A,B and C to Q (1) OR $\overline{Q} \text{ to clock input on the next IC } \times 2 (1)$ and then \overline{Q} to outputs A, B and C (1)					3		
	(b)				0	UTPUT	OU	TPUT B	OUTPUT	
			Ini	tial State		1		1	1	2
			Af	fter ONE		1		1	0	
			A	fter SIX ck pulses		0		0	1	
			Correc	et output et output	s for aft for afte	er one cl r five clo	ock puls	se (1) es (1)		
										[5]

Question			Marking details	Marks Available
7.	(a)		68/1+1 = 69	1
	(b)	(i)	$135 \pm 2 [kPa]$	1
		(ii)	$V_x = 74 \pm 2 \text{ [mV]}$ or implied by working (1) $74 \times 69 = 5.11 \pm 0.16 \text{ [V]}$ or $5 106 \pm 16 \text{ m[V]}$ (1) (ecf (a) and V_x)	2
	(c)		8.0/69 = 0.1159 V or 115 mV (accept 116 mV) (1) (ecf from (a)) From graph 115 mV = 172 \pm 2 [kPa] (2) (116 mV = 174 \pm 2 [kPa])	3
				[7]
8.	(a)		Resistor connected between input and inverting input (1) Variable resistor connected between output and inverting input (1) Wire connecting non-inverting input and 0 V (1)	3
	(b)	(i)	Resistances in ratio 60:1 with R_F correctly identified (1) Both resistances $\ge 1 \text{ k}\Omega$ (1)	2
		(ii)	Value for R_{IN} from (b) (i) identified as input impedance	1
	(c)		-9/0.2 = -45 (minus sign needed)	1
	(<i>d</i>)		$3.6 \times 10^{6}/30 = 120\ 000\ [Hz]$ or $120\ k[Hz]$ or $0.12\ M[Hz]$ (substitution 1 mark, answer with multiplier if appropriate 1 mark)	2
	(e)		Inverted graph with slew-rate shape on <u>both</u> edges (1) saturates at -12 V (correct position or labelled) (1) correct starting points and gradients (1) (reaches -12 V saturation at 4.5 µs and 0 V at 11.5 µs)	3
				[12]

Question			Answers/Explanatory Notes	Marks Available
1.	(a)		6 V	1
	<i>(b)</i>		$6 \vee ecf$ from (<i>a</i>)	1
	(c)		6 mA ecf from (<i>b</i>)	1
	(<i>d</i>)		$2 \text{ k}\Omega \text{ ecf from } (a) \& (c)$	1
	(e)		1 k Ω ecf from (d)	1
			correct use of Ohm's law this can be awarded from parts	1
			(a), (c) or (d) (shown by a tick in part (e)	[6]
2.	<i>(a)</i>	(i)	6.75 V (1)	3
		(ii)	0.09 A [90 mA] (1)	
		(iii)	75 Ω (1) ecf from (<i>a</i>)(i) & (ii)	
	<i>(b)</i>	(i)	Equiv cct and load with correct values from part (a) (1)	3
		(ii)	voltage drop across $R_0 = 0.02 \times 75 = 1.5 V (1)$	
			voltage drop across load = $6.75 - 1.5 = 5.25 V (1)$	
			[Accept any other method that makes use of equiv cct]	
			[Apply ecf from $(a) \& (b)(i)$]	[6]
3.	(a)	(i)	11.3 V (1)	3
		(ii)	[Unsmoothed] positive half cycle pulses (1) Accuracy of peak voltage (1) [Apply ecf from part (i)]	
	<i>(b)</i>	(i)	Capacitor in parallel with load (1)	2
		(ii)	Graph with 50 Hz ripple (1) ecf from $(a)(ii)$	
	(c)	(i)	10.6 V (1)	2
		(ii)	100 Hz (1)	[7]

Question			Answers/Explanatory Notes	Marks Available
4.	(a)		Substitution/multipliers (1)	2
			Answer in range 32.43 to 32.58 s (1)	
	<i>(b)</i>		Substitution/multipliers (1)	2
			9.7 V (1)	
	(c)		Graph going high at 20 s (1)	2
			Graph going low at approx 53 s (1)	
			[Apply ecf from (a)]	
				[6]
5.	(a)		$V_{IN} = 5 \times 2.3/12.3 = 0.94 \text{ V}$	1
	(b)	(i)	3.5 V for increasing output (1)	2
			1 V for decreasing output (1)	
			[Allow 1 mark if answers reversed]	
		(ii)	Switching threshold at 3 and 4.5 units on time axis $2 \times (1)$	3
			Inverted o/p with amplitude of 5 V (1)	
			[Apply ecf from part (i)]	
	(c)		$3 = g_{\rm M} \times 5 \ (1)$	2
			$g_{\rm M} = 0.6 \; {\rm S} \; (1)$	
				[8]

Question			Answers/Explanatory Notes	Marks Available
6.	(a)		Correct labels and shape (1)	2
			Correct M/S ratio (1)	
	(b)		$R_{\rm B} = 13 \mathrm{k}\Omega (1)$	2
			Substitution/multipliers (1)	
	(c)		$R_{\rm A} = 26 \rm k\Omega \ (1)$	1
			[Apply ecf from (<i>b</i>)]	[5]
7.	<i>(a)</i>		Voltage across $R = 9 V$ (1) I = 258 mA (1) R = 9/258 mA = 34.88 Ω (1)	3
	(b)		Select 33Ω to allow for 250 mA load current and 8 mA zener current	1
	(c)	(i)	3 V (1)	4
		(ii)	11.5 V (1)	
		(iii)	$P = 11.5^{2}/33 (1) = 4 W (1)$	
			[Accept 3.79 W if calculation based on $R = 34.88 \Omega$] [Apply ecf from previous parts]	
				[8]
8.	(a)	(i)	Both points plotted accurately within ± 1 square with graph linear between points (1)	2
		(ii)	$h_{FE} = 80 \pm 2$ [Apply ecf from an inaccurate graph] (1)	
	<i>(b)</i>	(i)	Accept answers in range 4.5 V to 4.6 V (1)	2
		(ii)	$6 \text{ V} \pm 0.5 \text{ V} (1)$	
	(c)		$V_{\text{load}} = 15 - (6 \pm 0.5 \text{ V}) = 9 \text{ V} \pm 0.5 \text{ V} (1)$	3
			IC = 9/120 = 0.075 A [75 mA] (1)	
			$P = 6 \times 0.075 = 0.45 W(1)$	
				[7]

(Juestion	Answers/Explanatory Notes	Marks Available
9.		Two resistors greater than $1 k\Omega$ (1)	
		Ratio resistors 1:3 (1)	
		Larger resistor at top (1)	
Voltage divider v		Voltage divider with LDR connected to non inv i/p (1)	
LDR at bottom (1)		LDR at bottom (1)	
		Variable resistor (1)	
		Correct transistor and lamp connections (1)	
			[7]
		TOTAL	60

Question			Marking details	Marks Available
1.	<i>(a)</i>	(i)	Inverting	1
	(b)	(ii)	1.0 V and 2.5 V (any order) v_{1N}/v f_{0}/v f	1
			Action consistent with part (a)	1
			Correct switching thresholds	1
			Correct saturation	1
				[5]
2.	<i>(a)</i>		Antenna – Tuned Circuit – Detector/Demodulator – RF Filter - HP	1
	(b)	(i)	480 kHz / 0.48 MHz 3.28 MHz	1 1
		(ii)	480 kHz or 0.48 MHz	1
		(iii)	Antenna Tuned RF Amplifier Mixer Loval Loval Loval Loval Link LE Filter / Amp may be in either order	3
			n' r'nei / Amp may be in either older	[7]

Question		n	Marking details	Marks Available
3.	(a)		Logic level	
			Completely reversed data orientation and correct parity bit = 1 Correct labels = 1	3
	(b)	(i)	P_4 & $P_0 = 1$, P_1 , P_2 and $P_3 = 0$ 5 correct = 2 / Complete inverse = 1	2
		(ii)	I. Only P_2 fails the parity test	1
			II.	
			$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
4				[7]
4.	(<i>a</i>)		$\beta = \frac{\Delta f_c}{f_i} = \frac{60}{20} = 3$ Correct formula + substitution (1) Answer (1)	2
	<i>(b)</i>		$bandwidth = 2(\Delta f_c + f_i) = 2(60 + 20) = 160 \text{kHz}$ or $bandwidth = 2(1 + \beta) f_i = 2(1 + 3) \times 20 = 160 \text{kHz}$	
			Correct formula + substitution (1) Answer (1) Allow ecf for β	2 [4]

Question		n	Marking details	Marks Available
5.	(a)		$\frac{9 - V_{IN}}{6.6} = \frac{9 - 2}{5.6}$ $9 - V_{IN} = \frac{7 \times 6.6}{5.6}$ or $9 - V_{IN} = 8.25$ $V_{IN} = 9 - 8.25 = 0.75V$ $V_{IN} = ?V$ Ik $V_{IN} = ?V$ $I = \frac{9 - 2}{5.6k} = 1.25mA$ $so V_{Ik} = 1.25mA \times 1k = 1.25V$ $\therefore V_{IN} = 2 - 1.25 = 0.75V$	2
	(b)		$\frac{-9 - V_{IN}}{6.6} = \frac{-9 - 2}{5.6}$ $-9 - V_{IN} = \frac{-11 \times 6.6}{5.6} \text{ or } V_{X} = 2V$ $V_{IN} = -9 + 12.96 = 3.96V$ $V_{IN} = -9 + 12.96 = 3.96V$ $V_{IN} = \frac{9V}{1}$ $I = \frac{-9 - 2}{5.6k} = 1.96 \text{ mA}$ $so V_{Ik} = 1.96 \text{ mA} \times 1 \text{ k} = 1.96V$ $\therefore V_{IN} = 2 + 1.96 = 3.96V$ $correct formula / \text{ substitution (1)}$ $correct answer (1)$	2

Question			Marking details	Marks Available
6. (a) i)			Pulse Amplitude Modulation	1
		ii)	Amplitude time	
			Consistency of Shape (1) Accuracy (1)	2
	(b)	i)	Pulse Width Modulation	1
		ii)	Amplitude time	
			Consistency of Shape (1) Accuracy (1)	2
				[6]
7.	<i>(a)</i>		Minimum frequency = $10 \times 8 \text{ kHz} = 80 \text{ kHz}$	1
			The PISO register must output 10 data bits before the next sample is taken.	1
	(b)		<i>resolution</i> = $\frac{6}{2^{10}} = \frac{6}{1024} = 5.86 \mathrm{mV}$ correct use of 2 ¹⁰ (1) answer (1)	2
	(c)		Schmitt trigger – SIPO – DAC – Low Pass Filter	
			SIPO Clock SIPO Clock – SIPO = 1 Schmitt – SIPO = 1 SIPO – DAC – LPF = 1	3 [7]

Question			Marking details	Marks Available	
8.	<i>(a)</i>	i)	472 kHz	1	
		ii)	Use of 0.7 max to determine bandwidth – clearly marked on graph (1)		
			bandwidth = $8 \text{ kHz} (1)$	2	
	<i>(b)</i>		$Q = \frac{f_o}{B} = \frac{472}{8} = 59$	1	
	(c)		$Q = \frac{2\pi f_0 L}{r_L}$ $L = \frac{Q \times r_L}{2\pi f_o} = \frac{59 \times 0.7}{2 \times \pi \times 472000} = 13.9 \times 10^{-6} = 13.9 \mu H$ $L = 14.16 \mu H (Q = 60)$ No mark if value of Q out of bounds		
			Formula + rearrangement (1) answer (1)	2	
	(<i>d</i>)		$C = \frac{1}{4\pi^2 f_o^2 L}$		
			$C = \frac{1}{4 \times \pi^{2} \times 472000^{2} \times 13.9 \times 10^{-6}}$ $C = 8.18 \times 10^{-9} = 8.2 \text{nF}$ C = 8.02 nF(L = 14.16 uH)		
			No mark if <i>L</i> out of bounds answer	1	
	(e)	i)	$R_{D} = \frac{L}{r_{L}C}$	1	
			$R_{D} = \frac{13.9 \times 10^{-6}}{0.7 \times 8.18 \times 10^{-9}} = 2427\Omega$ $R_{D} = 2427\Omega$		
			If $L = 14 \mu H$ and $C = 8nF$ then R_D is 2500 Ω		
			If $L = 14.16 \mu H$ and $C = 8.02 nF$ then R_D is 2522 Ω No mark if L or C out of bounds		
		ii)	$I = \frac{8}{2427} = 3.3 \text{mA}$ or $R = \frac{2427}{4} = 606\Omega$ $R = \frac{2}{3.3 \times 10^{-3}} = 606\Omega$	1	
			Substitution in formula (1) answer (1)	2	
				[10]	

1. (a)

Main sequence correct Unused states identified correctly ecf Unused

(b)

(a)

2.

Unused states lead into main sequence (anywhere)
$D_{\rm C} = B \cdot A$
$D_B = A + \overline{C}$
$D_A = C \cdot B \cdot \overline{A}$ (or equivalents)

1 mark 1 mark 1 mark 1 mark 1 mark

Total for Q1

6

1 mark

(a)		Current Outputs			
	State	С	B	Α	
	0	0	0	0	
	1	1	0	1	
	2	1	0	0	

State	U	В	A	D _C	D_{B}	DA
0	0	0	0	1	0	1
1	1	0	1	1	0	0
2	1	0	0	1	1	0
3	1	1	0	0	1	0
4	0	1	0	0	0	0
5	0	0	1	1	1	1
6	0	1	1	0	1	0
7	1	1	1	0	0	0

One mark for each correct data input

3 marks

C B A correct for eight steps (Main sequence only, and repeated: 1 mark only) C B A correct for six or seven steps only - 1 mark

Next Outputs

 $D_C D_B D_A / C, B, A$ structure correct *(b)* Unused states -0.01/0.11/1.11 (ecf) All Any two - 1 mark *(c)* No stuck states (ecf)

3.

STATUS, RP0 b '11111' TRISA b 'XXXX0001' TRISB STATUS, RP0

Total for Q2

2 marks

1 mark

6

bsf (a)movlw movwf movlw movwf bcf Correct binary number for TRISA 1 mark Correct binary number for TRISB ('X' = any value) 1 mark (b) (i) ISR is labelled 'alarm' 1 mark (ii) temp. sensor output connected to bit 6 1 mark (iii) Clears interrupt flag / allows further interrupts or equivalents 1 mark "Bit 1" instead of ".....flag": no marks (d) (iv) LED pulses 1 mark Buzzer switches on continuously 1 mark until switch on PORT A0 is pressed. 1 mark 8

Total for Q3

4.	(a)	(i)	Load regulation – output voltage unaffected by load current / resistance	1 mark
		(ii)	Line regulation – output voltage unaffected by supply voltage	1 mark
	(b)	(i)	Non-inverting input voltage = $10.0 V$	1 mark
		(ii)	Transistor symbol with base to output of op-amp	1 mark
		~ /	Correct connections for collector and emitter	1 mark
		(iii)	$V_{OUT} = 12.0 V$	1 mark
		(iv)	No change to output voltage	1 mark
		(17)	Voltage earoge 1800 register increases to 5.5V (accent increases)	1 mark
			voltage across 18032 resistor increases to 5.5 v (accept increases)	1 mark
			Total for Q4	8
5.	(a)	(i)	In Gray code, only 1 bit changes at a time. In binary, several bits can change.	1 mark
	()	(ii)	Binary can give false readings when ontoswitches cross a segment boundary	1 mark
		()	C = V	1 montr
				1 mark
			$A = X \cdot Y$	1 mark
			$\mathbf{R} = \mathbf{X} \cdot \mathbf{Y} (\text{or } \mathbf{X} + \mathbf{Y})$	1 mark
			Total for Q5	5
6.	(a)	(i)	Voltage at X falls	1 mark
	()	(ii)	Voltage at Y falls	1 mark
	(\mathbf{h})	(i)	Voltage at X falls	1 mark
	(0)	(i) (ii)	Voltage at V unchanged	1 mark
	(c)	(11)	Circuit must amplify the difference in voltage between X and X	1 mark
	()		and ignore absolute size of each such as interference spikes	1 mork
	(\mathbf{J})		and ignore absolute size of each such as interference spikes. $V_{-} = \pm 1.25 M$	1 marks
	(a)		$v_{OUT} = +1.23 v$	2 marks
			Total for Q6	7
7.	(a)	(i)	Diac $-$ correct circuit symbol in series with gate terminal	1 mark
· •	(u)	(i) (ii)	RC network connected correctly	1 mark
		(11)	with variable resistor	1 mark
	(\mathbf{h})	(\cdot)	These angle $= 18^0$	1 mark
	(D)	(1)	Phase angle = 18	I IIIark
		<i></i>	Appropriate calculation	1 mark
		(11)	The bigger the phase angle the dimmer the bulbs.	1 mark
	(C)		Correct shape during positive half-cycle – triggers at 25 V and on afterwards	l mark
			Correct shape during negative half-cycle – switched off	l mark
			Total for Q7	8
8.	(<i>a</i>)	(i)	Optimum voltage gain of $P = 10$	1 mark
			Gain of $Q = 100 \div$ gain of P	1 mark
		(ii)	Correct bandwidth = 2×10^5	1 mark
		()	allow ecf from (i)	1 110011
		(iii)	Capacitors block any DC component in signal	1 mark
	(h)	(i)	Voltage gain $= 1$	1 mark
	(b)	(i) (ii)	Impedance matching between pre-amp and subsequent stage	1 mark
		(11)	Total for OS	1 mark
				U
9.	(a)		Correct shape for treble cut filter	1 mark
			Correct low frequency gain (= 20)	1 mark
			Correct break frequency (= 10 kHz)	1 mark
	<i>(b)</i>	(i)	Parallel RC network	1 mark
	. /		RC network in feedback loop and rest of circuit correct	1 mark
			Correct low frequency gain	1 mark
		(ji)	Correct capacitor = $0.1 \mathrm{nF}$	1 mark
		(11)	$\Delta nnronriate calculation (eef)$	1 mark
	(a)	(\mathbf{i})	V = 1.2V	1 mark
	(C)	(1)	$v_{OUT}1.2 V$	1 IIIark
		(11)	Output 0.7 v smaller than v_{IN}	1 mark
			Horizontal section for V_{IN} between +0.7 V and -0.7 V	1 mark
			Total for Q9	11

10.	(a)		$V_{OUT} = -0.6 V$ (wrong sign: no marks)		1 mark
	(b)	(i)	Correct ratio of input resistors ($R_B = 150 \text{ k}\Omega$, $R_A = 300 \text{ k}\Omega$)		1 mark
			Feedback resistor = $30 \text{ k}\Omega$		1 mark
		(ii)	Correct circuit for inverting amplifier, with input connected		1 mark
			Equal values for feedback and input resistors and both $>1 \text{ k}\Omega$		1 mark
			Ĩ	Fotal for Q10	5

WJEC 245 Western Avenue Cardiff CF5 2YX Tel No 029 2026 5000 Fax 029 2057 5994 E-mail: <u>exams@wjec.co.uk</u> website: <u>www.wjec.co.uk</u>