| Surname | Centre
 Number | Candidate
 Number |
| :--- | :--- | :--- | :--- |
| Other Names | | |

GCE A level

WJEC CBAC

1144/01

ELECTRONICS - ET4

P.M. THURSDAY, 5 June 2014

1 hour

ADDITIONAL MATERIALS

In addition to this examination paper, you will need a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

For Examiner's use only		
Question	Maximum Mark	Mark Awarded
1.	5	
2.	7	
3.	7	
4.	4	
5.	4	
6.	6	
7.	7	
8.	10	
Total	50	

Write your name, centre number and candidate number in the spaces at the top of this page.
Answer all questions.
Write your answers in the spaces provided in this booklet.

INFORMATION FOR CANDIDATES

The total number of marks available for this paper is 50 .
The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.
You are reminded to show all working. Credit is given for correct working even when the final answer given is incorrect.

INFORMATION FOR THE USE OF CANDIDATES

Preferred Values for resistors

The figures shown below and their decade multiples and sub-multiples are the E24 series of preferred values.
$10,11,12,13,15,16,18,20,22,24,27,30,33,36,39,43,47,51,56,62,68,75,82,91$.

Standard Multipliers:

Prefix	Multiplier
T	$\times 10^{12}$
G	$\times 10^{9}$
M	$\times 10^{6}$
k	$\times 10^{3}$

Filters

Modulation

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{b}}=\frac{1}{2 \pi \mathrm{RC}} \\
& \mathrm{X}_{\mathrm{C}}=\frac{1}{2 \pi \mathrm{fC}} \\
& \mathrm{X}_{\mathrm{L}}=2 \pi \mathrm{fL} \\
& \mathrm{Z}=\sqrt{\mathrm{R}^{2}+\mathrm{X}_{\mathrm{C}}^{2}} \\
& \mathrm{f}_{0}=\frac{1}{2 \pi \sqrt{\mathrm{LC}}} \\
& \mathrm{R}_{\mathrm{D}}=\frac{\mathrm{L}}{\mathrm{r}_{\mathrm{L}} \mathrm{C}} \\
& \mathrm{Q}=\frac{2 \pi \mathrm{f}_{0} \mathrm{~L}}{\mathrm{r}_{\mathrm{L}}} \\
& \mathrm{Q}=\frac{\mathrm{f}_{0}}{\mathrm{~B}}
\end{aligned}
$$

Prefix	Multiplier
m	$\times 10^{-3}$
μ	$\times 10^{-6}$
n	$\times 10^{-9}$
p	$\times 10^{-12}$

Modulation

$$
\begin{array}{ll}
\mathrm{m}=\frac{\left(\mathrm{V}_{\max }-\mathrm{V}_{\min }\right)}{\left(\mathrm{V}_{\max }+\mathrm{V}_{\min }\right)} \times 100 \% & \text { Depth of modulation } \\
\beta=\frac{\Delta \mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{i}}} & \text { Modulation index } \\
\text { resolution }=\frac{\mathrm{i} / \mathrm{p} \text { voltage range }}{2^{\mathrm{n}}} & \text { PCM } \\
\left.\begin{array}{l}
\text { Bandwidth }=2\left(\Delta \mathrm{f}_{\mathrm{c}}+\mathrm{f}_{\mathrm{i}}\right) \\
\text { Bandwidth }=2(1+\beta) \mathrm{f}_{i}
\end{array}\right\} & \text { Transmitted FM Bandwidth }
\end{array}
$$

Break frequency for high pass and low pass filters

Capacitive reactance
Inductive reactance
For a series RC circuit
Resonant frequency

Dynamic resistance

Radio receivers

$$
\mathrm{C}=\frac{1}{4 \pi^{2} \mathrm{f}_{0}^{2} \mathrm{~L}}
$$

BLANK PAGE

1. A Schmitt trigger circuit has the following characteristic.

(a) (i) What type of Schmitt trigger has this characteristic?
(ii) What are the switching thresholds for this Schmitt trigger?
\qquad
(b) Draw the output for this Schmitt trigger when the following analogue signal is applied to

2. The simple radio receiver is made from five functional blocks. The blocks are shown below.

(a) Draw a block diagram to show how these blocks are connected to make a simple radio receiver.
（b）The superheterodyne radio receiver offers considerable improvement compared to the simple radio receiver．Part of the superheterodyne receiver is shown below．

（i）The tuned RF amplifier has been tuned to a frequency of 1.4 M Hz ．The local oscillator output is measured at 1.88 M Hz ．What additional frequency signals will be present at the output of the mixer？
3. \qquad
4. \qquad
（ii）Which of these frequencies is the intermediate frequency？
\qquad
（iii）Complete the following block diagram of the full superheterodyne receiver．

5. The ASCII code is an internationally agreed method of coding alphanumeric characters in computer systems.

The following table gives the ASCII code for some characters.

Character	ASCII Code
f	0110110
g	0110111
h	0111000
i	0111001
j	0111010

(a) Complete the graph below to show the transmitted signals for character \mathbf{h} using even parity. Label the start, stop and parity bits.

(b) An asynchronous data transmission system uses a five bit parity system, with the parity bits assigned to the data bits as shown in the following table.

D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	P_{4}	P_{3}	P_{2}	P_{1}	P_{0}
				x	x	x	x					x
x	x	x	x								x	
		x	x			x	x			x		
	x	x			x	x			x			
x	x			x	x			x				

(i) The following data is to be transmitted.

Determine the values of the parity bits $\mathrm{P}_{4}-\mathrm{P}_{0}$ that should be transmitted with this data for an odd parity system. Complete the table.

D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	P_{4}	P_{3}	P_{2}	P_{1}	P_{0}
1	0	1	1	0	1	1	0					

(ii) The following data and parity bits are received from this system when different data is transmitted.

D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	P_{4}	P_{3}	P_{2}	P_{1}	P_{0}
1	1	1	0	1	1	0	0	1	0	1	0	1

There is a single error.
(I) Which parity bit(s) fail the parity test?
(II) Determine where the error is located and therefore write down the correct version.

D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	P_{4}	P_{3}	P_{2}	P_{1}	P_{0}

4. In national radio broadcasts using FM, the frequency deviation of the carrier, Δf_{c} is chosen to be 60 kHz . The range of the audio baseband is 20 Hz to 20 kHz .
(a) Calculate the modulation index, β, for the transmission.

\qquad
\qquad
\qquad
(b) Calculate the broadcast bandwidth of the signal.

The op-amp saturates at $\pm 9 \mathrm{~V}$.
(a) Calculate the value of $\mathrm{V}_{\text {IN }}$ which causes $\mathrm{V}_{\text {OUT }}$ to change from +9 V to -9 V .
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Calculate the value of $\mathrm{V}_{\text {IN }}$ which causes $\mathrm{V}_{\text {OUT }}$ to change from -9 V to +9 V .
\qquad
\qquad
\qquad
\qquad
\qquad
6. The following graphs show different ways in which Pulse Modulation can be used in a communication system. For each case state:
(i) which method is being used, either PPM, PWM or PAM;
(ii) sketch the original modulating signal.
(a) (i) Type of Pulse Modulation used \qquad

Amplitude

(ii) Sketch the modulating signal below.

Amplitude

[3]

(ii) Sketch the modulating signal below.

Amplitude

[3]
7. The following block diagram shows a Pulse Code Modulation (PCM) transmitter used in the telephone system, transmitting speech information in the range 50 Hz to 3.9 kHz .

(a) What is the minimum frequency for the PISO Clock for this PCM transmitter? Give a reason for your answer.

Minimum Frequency $=$ \qquad
Reason \qquad
(b) The 10-bit Analogue to Digital Converter (ADC) has an input voltage range of 0 to 6 V . What is the resolution of the system?
(c) Draw a block diagram of a PCM receiver using the following functional blocks.
8. A student has built an intermediate frequency filter for a superheterodyne receiver. The circuit is shown below. The inductor resistance r_{L} is 0.7Ω. The circuit is tested with a signal generator which is set to provide a constant amplitude of 10 V .

The graph shows the characteristic for the filter.

(a) Determine and show on the graph:
(i) the resonant frequency; \qquad
(ii) the bandwidth.
(b) Use your answers from (a) to show by calculation that the Q factor of the filter is approximately 60.
\qquad
\qquad
\qquad
(c) Use your answers from parts (a) and (b) to show by calculation that the ideal value of the inductor is approximately $14 \mu \mathrm{H}$.
(Note: If your value of Q is not between 58 and 61 use a value of $\mathrm{Q}=60$ from here on.)
(d) Show by calculation that the value of C required to achieve the resonant frequency for this filter is approximately 8 nF . (Note: If your value of L is not between $13 \mu \mathrm{H}$ and $15 \mu \mathrm{H}$ use a value of $\mathrm{L}=14 \mu \mathrm{H}$ from here on.)
\qquad
\qquad
\qquad
\qquad
(e) (i) Calculate the dynamic resistance for this filter, showing all working.
(Note: If your value of C is not between 7 nF and 9 nF use a value of $\mathrm{C}=8 \mathrm{nF}$.)
\qquad
\qquad
\qquad
\qquad
(ii) Use your answer from (e)(i) to determine the value of R.

BLANK PAGE

BLANK PAGE

