GCE MARKING SCHEME

ELECTRONICS
 AS/Advanced

SUMMER 2013

INTRODUCTION

The marking schemes which follow were those used by WJEC for the Summer 2013 examination in GCE ELECTRONICS. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.
Page
ET1 1
ET2 6
ET4 9
ET5 16

GCE Electronics - ET1

Summer 2013

Question			Marking Details	Marks Available
4.	(a) (b)	(i) (ii) (iii)	B to NOT gate (1) NOT gate to AND's with A and C (both correct) (1) AND's to OR gate to Q (1) Correct replacement NOT by NAND (1) Correct replacement AND by NAND (both required) (1) Correct replacement OR by NAND (1) Allow ecf from (i) Two correct redundancies clearly identified 6 (NAND gates required)	3 2 1
				[9]
5.	(a)	(i)	Binary (0) 1111011	1
		(ii)	BCD 000100100011	1
	(b)		Fewer bits required (for binary) or equivalent	1
				[3]

Question			Marking details	Marks Available
7.			$\begin{aligned} & \text { B starts at logic } 1(1) \\ & \text { B falls to logic zero at } 50 \mathrm{~ns}(1) \\ & \mathrm{Q} \text { is } 30 \mathrm{~ns} \text { pulse/notch (1) } \\ & \mathrm{Q} \text { positive pulse between } 30 \text { and } 60 \mathrm{~ns}(1) \end{aligned}$	4
				[4]
8.	(a) (b)	(i) (ii)	-60 (minus sign and value needed, ignore units) $\mathrm{V}_{\text {Out }}$ inverted version of $\mathrm{V}_{\text {IN }}(1)$ Peaks at ± 10 V (1) Peaks, troughs and intercepts on time axis correct (1) Inverted graph of input with same time axis intercepts (1) Clipping shown at $\pm 14 \mathrm{~V}$ (1)	3 2
				[6]
9.	(a)	(i) (ii)	Y faster slew rate (or equivalent) Both needed $\frac{2.5 \times 10^{6}}{500}=5000[\mathrm{~Hz}] \text { or } 5 \mathrm{k}[\mathrm{~Hz}] \text { or } 0.005 \mathrm{M}[\mathrm{~Hz}]$	
	(b) (c) (d)	(i) (ii)	Feedback resistor between output and inverting input (1) Resistor between inverting input and 0 V (1) Input terminal to non-inverting input (1) Resistors in ratio 79:1 (1) Resistors correctly identified and both $1 \mathrm{k} \Omega$ or greater (less than $10 \mathrm{M} \Omega$) (1) Horizontal line at gain $=80$ for low frequency (1) Sloping line passing through point $(24,56)(1)$ Slew rate $=\frac{12}{4.8}=2.5(1) \mathrm{V}_{\mu \mathrm{s}}{ }^{-1}$ (1)	2 2 2 [11]

GCE Electronics: Unit ET2
Summer 2013

Question			Answers/Explanatory Notes	Marks Available
1	(a) (b)	(i) (ii) (iii)	$\begin{aligned} & 6 \mathrm{~V}(1) \\ & 3 \mathrm{~mA}(1) \\ & 2.4 \mathrm{~mA}(1) \end{aligned}$ Voltage across resistors $=8.3 \mathrm{~V}$ (1) Voltage across each $1 \mathrm{k} \Omega$ resistor $=4.15 \mathrm{~V}$ $\mathrm{V}_{\text {OUT }}=4.85 \mathrm{~V}$ (1)	3 3 [6]
2.	(a) (b) (c)	(i) (ii)	X low, Y high (1) X high, Y low (1) [allow 1 mark if answers to (i) and (ii) are reversed] Buzzer between 9 V supply and Y [ecf from (a)(ii)] To prevent false switching e.g. due to changes in ambient light	2 1 1 [4]
3.	(a) (b)	(i) (ii) (i) (ii)	$\begin{aligned} & \mathrm{R}=4 \mathrm{~V} / 15 \text { (1) } \\ & \mathrm{R}=267 \Omega(1) \\ & 270 \Omega(1) \end{aligned}$ Diode across LED (1) and in inverse parallel (1) accept range 133Ω to 135Ω (1) [allow ecf from (a)]	3 3 [6]
4.	(a) (b) (c)	(i) (ii) (iii) (i) (ii)	$10 \mathrm{~s}$ Substitution/multipliers (1) 6.9 s (1) Substitution/multipliers (1) 0.81 V (1) 50 s Appropriate scales (1) Quality/accuracy of curve (1) 11 s [accept range $10-12 \mathrm{~s}$] (1) [allow ecf from (b)]	1 2 2 1 3 [9]

Question			Answers/Explanatory Notes	Marks Available
5.	(a) (b) (c) (d)	(i) (ii) (i) (ii)	4.24 V (1) 4.6 V (1) Graph with horizontal line just below peak (1) Voltage label showing peak at 4.6 V (1) [allow ecf from (a)] Graph showing large (1) Full wave output (1) Increases (1) 50 Hz (1)	2 2 2 2 [8]
6.	(a) (b) (c)		Switch and resistor in trigger cct (1) Switch at bottom (1) Relay between pin 3 and 0 V rail (1) NO contact/connections in secondary cct (1) [accept relay connected to 15 V rail with NC contact] $\mathrm{T}=300 \mathrm{~s}(1)$ substitution into formula/multipliers (1) $1.24 \mathrm{M} \Omega(1)$	2 2 3 [7]
7.	(a) (b) (c)		Substitution/rearranging formula (1) $\mathrm{g}_{\mathrm{M}}=1.875 \mathrm{~S}$ zero [accept answers less than 0.1 mA] gives low power consumption in the MOSFET	2 1 1 [4]

GCE Electronics - ET4

Summer 2013

Question

GCE Electronics - ET5

Summer 2013

1. (a) Three states in the main sequence
(b) (i) Unused states - do not form part of the main sequence 1
(ii) Stuck state - one that never progresses into the main sequence 1
(c) (i) One of $S_{5} / S_{6} / S_{7}$.
(ii) Two stuck states $-S_{3}$ and S_{4} (both needed to get mark.) 1
(iii) Stuck states can be a problem on power-up or system reset. 1
2. (a)

	Current Outputs				Next Outputs		
State	\mathbf{C}	\mathbf{B}	\mathbf{A}	$\mathbf{D}_{\mathbf{C}}$	$\mathbf{D}_{\mathbf{B}}$	$\mathbf{D}_{\mathbf{A}}$	
0	1	0	0	1	1	0	
1	1	1	0	0	1	1	
2	0	1	1	0	0	1	
3	0	0	1	1	0	0	
4	0	0	0	1	1	0	
5	0	1	0	0	1	1	
6	1	0	1	1	0	0	
7	1	1	1	0	0	1	

Main sequence identified (1)
Unused states identified (1)
Correct progression for main sequence (1)
Correct progression for unused states (1)
(b)
$\begin{array}{ll}D_{C}=B & \text { or ecf from table (1) } \\ D_{B}=\bar{A} & \text { or ecf from table (1) } \\ D_{A}=B & \text { or ecf from table (1) }\end{array}$
(c)

Clock

Correct clock connections (1)
D_{C} correct or ecf from part (b) (1)
D_{B} correct or ecf from part (b) (1)
D_{A} correct or ecf from part (b) (1)
Use of Q bar instead of NOT gates (1)
3. (a) PORT A: bit 2 is an input; all others are outputs (1)

PORT B: all bits are inputs (1)
(b) movlw b '1 X X 1 XXXX X' $(\mathrm{X}=$ 'don't care' $)$
(c) 101 alarm movwf Wtemp,1
$\begin{array}{lll}102 & \text { bcf } & \text { INTCON, } \\ 103 & \text { bsf } & \text { PORTA 4 }\end{array}$
$\begin{array}{lll}103 & \text { bsf } & \text { PORTA,4 } \\ 104 & \text { bsf } & \text { PORTA,3 }\end{array}$
105 call fivesec
106 clrf PORTA
107 movf Wtemp,0
108 retfie
All seven commands complete / correct 4 marks
Any five 3 marks only
Any three 2 marks only
Any one 1 mark only
(d) Working register may be used, and hence contents changed, in ISR
4. (a) (i) Voltage at $\mathrm{X}=0.75 \mathrm{~V}$
(ii) Y indicates whether the analogue input voltage exceeds the input voltage range.
(b) (i) Resolution $=0.25 \mathrm{~V}$
(ii) \quad Reference voltage $=2 \mathrm{~V} \quad 1$
(iii) Resistor chain will contain 8 resistors 1
(iv)

Inputs							Outputs		
\mathbf{P}	\mathbf{Q}	\mathbf{R}	\mathbf{S}	\mathbf{T}	\mathbf{U}	\mathbf{V}	\mathbf{C}	\mathbf{B}	\mathbf{A}
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	1
1	1	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	1	1
1	1	1	1	0	0	0	1	0	0
1	1	1	1	1	0	0	1	0	1
1	1	1	1	1	1	0	1	1	0
1	1	1	1	1	1	1	1	1	1

Comparator outputs P to V correct (2)
Pattern reversed, or use of saturation voltages, subtract one mark
Binary outputs CBA correct (1)
5. (a) One strain gauge is under different strain from the other.
(b) (i) Voltage at $\mathrm{P}=5.42 \mathrm{~V}$
(ii) Voltage at $\mathrm{Q}=5.45 \mathrm{~V} \quad 1$
(iii) \quad Voltage gain of difference amplifier $=41 \quad 1$
(iv) $\quad \mathrm{V}_{\text {OUT }}=-1.23 \mathrm{~V}$ Incorrect sign - subtract one mark
(c) Both strain gauges are exposed to same temperature, and so output of bridge is unaffected by temperature variation
(d)

Zener diode + resistor, with correct symbols and orientation (1)
Emitter follower, with correct symbols and orientation (1)
Correct connections to op-amp (1)
Total for Q5
6. (a)

Gate - must receive a sufficient positive pulse of current, or equivalent
(b) Holding current - minimum anode/cathode current needed to maintain latching
(c) (i) Diac - correct circuit symbol in series with gate terminal
(ii) Phase shift $=\tan ^{-1}\left(\mathrm{R} / \mathrm{X}_{\mathrm{C}}\right)$

Evidence of correct interpretation of multipliers and/or X_{C} (1)
(iii)

For $\mathrm{V}_{\mathrm{C}}-$ sinusoidal with phase lag (1)

- correct alignment to firing voltage (1)

For V_{T} - correct shape (1)
For V_{L} - correct shape (1)

$$
\mathrm{V}_{\mathrm{T}}+\mathrm{V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{S}}(1)
$$

7.

(a) \quad Filter $=$ bass cut
(b) \quad Break frequency $=260.5 \mathrm{~Hz}$

Use of $13 \mathrm{k} \Omega$ resistor (1)
Evidence of correct interpretation of multipliers (1)
Correct answer (1)
(c) Correct shape, allowing ecf from (a)(1)

Correct break frequency, allowing ecf from (b)(1)
Correct gain on horizontal portion $(=30)(1)$
Total for Q7
8. (a)

Link Z only
(b)

$$
\mathrm{R}_{1}=\mathrm{R}_{2}
$$

(c) (i) Max power dissipation $=9 \mathrm{~W}$
(ii) Zero, or reduced, power dissipation when signal $=0$
(iii)

Amplitude $=5.3 \mathrm{~V}$ (1)
Evidence of crossover distortion (1)
Correct crossover distortion - horizontal curve between -0.7 and +0.7 V (1)
(iv)

Four components as shown (1)
Correct orientation (1)

WJEC
245 Western Avenue
Cardiff CF5 2YX
Tel No 02920265000
Fax 02920575994
E-mail: exams@wjec.co.uk
website: www.wjec.co.uk

