Surname

Centre

2

Candidate Number

Other Names

GCE A level

1145/01

ELECTRONICS – ET5

A.M. WEDNESDAY, 12 June 2013

 $1\frac{1}{2}$ hours

For Examiner's use only					
Question	Maximum Mark	Mark Awarded			
1.	6				
2.	12				
3.	8				
4.	8				
5.	10				
6.	10				
7.	7				
8.	9				
Total	70				

ADDITIONAL MATERIALS

In addition to this examination paper, you will need a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all questions.

Write your answers in the spaces provided in this booklet.

INFORMATION FOR CANDIDATES

The total number of marks available for this paper is 70.

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the necessity for good English and orderly presentation in your answers.

You are reminded to show all working. Credit is given for correct working even when the final answer given is incorrect.

INFORMATION FOR THE USE OF CANDIDATES

Preferred Values for resistors

The figures shown below and their decade multiples and sub-multiples are the E24 series of preferred values.

10, 11, 12, 13, 15, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 43, 47, 51, 56, 62, 68, 75, 82, 91.

Standard Multipliers

Prefix	Multiplier
Т	$\times 10^{12}$
G	$\times 10^9$
М	$ imes 10^{6}$
k	$\times 10^3$

Prefix	Multiplier
m	$ imes 10^{-3}$
μ	$ imes 10^{-6}$
n	$ imes 10^{-9}$
р	$\times 10^{-12}$

Alternating Voltages	$V_o = V_{rms} \sqrt{2}$	
Silicon Diode	$V_F \approx 0.7 V$	
Operational amplifier	$G = -\frac{R_F}{R_{IN}}$	Inverting amplifier
	$G = 1 + \frac{R_F}{R_1}$	Non-inverting amplifier
	$\mathbf{V}_{\rm OUT} = \mathbf{V}_{\rm DIFF} \left(\frac{\mathbf{R}_{\rm F}}{\mathbf{R}_{\rm 1}}\right)$	Difference amplifier
	$V_{OUT} = -R_F \left(\frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3} \right)$	Summing amplifier
	$V_L \approx V_Z \left(1 + \frac{R_F}{R_1} \right)$	Stabilised power supply
Emitter follower	$V_{OUT} = V_{IN} - 0.7 V$	
Filters	$f_b = \frac{1}{2\pi RC}$	Break frequency for high pass and low pass filters
	$X_{\rm C} = \frac{1}{2\pi f C}$	Capacitive reactance
Thyristor phase control	$\phi = \tan^{-1} \frac{R}{X_{\rm C}}$	
	$\tan\phi = \frac{R}{x}$	
Signal conversion	resolution = $\frac{i/p \text{ voltage range}}{2^n}$	ADC
Power amplifier	$P_{MAX} = \frac{V_S^2}{8R_L}$	where V _S is the rail-to-rail voltage

PIC Information

The PIC programs include 'equate' statements that define the following labels:

Label	Description
PORTA	input / output port A
PORTB	input / output port B
TRISA	the control register for port A
TRISB	the control register for port B
STATUS	the status register
INTCON	the interrupt control register
W	the working register (= h '0')
F	the file register (= h '1')
RP0	the register page selection bit 0
Ζ	the zero flag status bit
GIE	the global interrupt controller bit
INTE	the external interrupt enable bit

Pin out for 16F84 PIC IC:

RA2	•		RA1
RA3	q		RA0
RA4	q		CLK IN
MCLR	9	16	CLK OUT
VSS	q	F8	VDD
RB0/INT	q	4	RB7
RB1	q		RB6
RB2	9		RB5
RB3	٩		RB4

List of commands:

Mnemonic	Operands	Description
bcf	f, b	Clear bit b of file f
bsf	f, b	Set bit b of file f
btfss	f, b	Test bit b of file f, skip next instruction if bit is set
call	k	Call subroutine k
clrf	f	Clear file f
goto	k	Branch to label k
movf	f, d	Move file f (to itself if $d = 1$, or to working register if $d = 0$)
movlw	k	Move literal k to working register
movwf	f	Move working register to file f
retfie		Return from interrupt service routine and set global interrupt enable bit GIE

Comparison of TASM and MPASM languages:

Ver	sion	TASM	MPASM
	Decimal	153	d'153'
Number system	Hex	\$2B	h'2B' or 0x2B
notation	Binary	%10010110	b'10010110'
		.equ	equ
Onacda	Notation	.org	org
Opcode Notation		.end	end
		label:	label

Structure of the INTCON register

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
GIE	EEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF

Structure of the STATUS register

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IRP	RP1	RP0	ТО	PD	Z	DC	С

BLANK PAGE

4

	(S_{5} S_{2} S_{1} S_{3}	
(a)	How	many states are in the main sequence?	[1]
(b)	(i)	What is meant by the term <i>unused state</i> ?	[1]
	(ii)	What is meant by the term <i>stuck state</i> ?	[1]
(c)	(i)	Identify one unused state that is not a <i>stuck state</i> .	[1]
	(ii)	Identify all the <i>stuck states</i> .	[1]
	(iii)	When are <i>stuck states</i> likely to be a problem?	[1]

1. The state diagram for a sequence generator is shown in the diagram:

© WJEC CBAC Ltd.

Turn over.

[4]

2. A sequence generator is specified by the following state diagram:

(a) Use the information in the state diagram to complete the table.

	Current Outputs			Next Outputs		
State	С	В	Α	D _C	D _B	D _A
0						
1						
2						
3						
4						
5						
6						
7						

- (b) Use the table to deduce the simplest form of Boolean expressions linking D_C , D_B and D_A to the outputs C, B and A. [3]
 - **D**_C =
 - **D**_B =
 - **D**_A =

(c) Complete the circuit diagram for this sequence generator. (Credit will be given for using the minimum number of gates.)

Clock _____

Examiner only

[5]

Turn over.

- Examiner only
- The following code is written to the data direction registers of a PIC microcontroller: (a)bsf STATUS, RP0 b '00100' movlw TRISA movwf b '111111111' movlw TRISB movwf STATUS, RP0 bcf Describe the effect of this code on PORT A and PORT B of the microcontroller. [2] PORT A PORT B
- (b) On page 3, the Information Sheet gives the structure of the INTCON register.

Complete the following instruction to enable the external interrupt on PORT B bit 0.

[1]

b '____' INTCON movlw movwf

8

3.

- (c) Complete the template provided below to write an Interrupt Service Routine, identified by the label *alarm*, that:
 - saves the contents of the Working Register to the file Wtemp;
 - clears the INTF bit in the INTCON register;
 - lights an LED connected to bit 4 of PORT A, by setting the bit to logic 1;
 - turns on a buzzer connected to bit 3 of PORT A, by setting that bit to logic 1;
 - calls the delay subroutine called *fivesec*;
 - switches off the LED and the buzzer;
 - recovers the contents of the Working Register from the file Wtemp;
 - returns to the main program and sets the Global Interrupt Enable bit at the same time. [4]

(The numbers in the left-hand column are line numbers in the program listing.)

101	alarm			; save the contents of the Working Register
102		bcf	INTCON,1	; reset the External Interrupt Flag
103				; light the LED connected to bit 4 of PORT A
104				; turn on the buzzer on bit 3 of PORT A
105				; call the delay subroutine called <i>fivesec</i>
106				; switches off the LED and the buzzer
107				; recover the Working Register from Wtemp
108				; return to main program / re-enable interrupts

(d) Why is it necessary to save the contents of the Working Register when starting the Interrupt Service Routine? [1]

.....

 $1145 \\ 010009$

Inputs						Outputs			
Р	Q	R	S	Т	U	V	С	B	A
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	1

(iv) The outputs of the comparators are connected to inputs P, Q, R, S, T, U and V of the new priority encoder. Complete the table for the new priority encoder. [3]

11

5. A bridge circuit is used to monitor strain in part of a crane when it is loaded. It uses two identical strain gauges, S_1 and S_2 , and a difference amplifier. +12V •

(c)	Why is V _{OUT} unaffected by temperature variation? [1	Examiner only
(<i>d</i>)	The 12V power supply is obtained from a voltage regulator. It consists of a zener diode	

(d) The 12V power supply is obtained from a voltage regulator. It consists of a zener diode, an emitter follower and a non-inverting amplifier. Complete the circuit diagram for this voltage regulator. [3]

- 6. (a) State one condition needed at the gate of a forward-biased thyristor to make it conduct. [1]
 (b) What is meant by the term *holding current* when related to a thyristor? [1]
 - (c) The circuit diagram shows a thyristor controlling the output of a heater, using phase control.

- (i) Modify the circuit diagram by adding a diac so that it improves the rise-time of the gate signal. [1]
- (ii) Calculate the phase angle between the power supply voltage, V_S , and the voltage across the capacitor, V_C , when the variable resistor is set to a resistance of 15 k Ω .

[2]

7. An audio system includes the following tone control circuit, based on an active filter.

Examiner only

18

only

