GCE MARKING SCHEME

ELECTRONICS
AS/Advanced

SUMMER 2012

INTRODUCTION

The marking schemes which follow were those used by WJEC for the Summer 2012 examination in GCE ELECTRONICS. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.
Page
ET1 1
ET2 6
ET4 9
ET5 15

Question		Marking details	Marks Available
(b)			To pull the input up [to logic 1 when the switch is open] or to prevent 'short circuiting' power supply when switches are pressed. Logic 1 or high (not 5 V) (c) (d)

Question			Marking details	Marks Available
5.	(a)		A B X Y 1 1 0 1 0 1 $\mathbf{1}$ $\mathbf{0}$ 1 1 $\mathbf{1}$ $\mathbf{0}$ 1 0 $\mathbf{0}$ $\mathbf{1}$ 1 1 $\mathbf{0}$ $\mathbf{1}$ 0 0 $\mathbf{1}$ $\mathbf{1}$ Setting/resetting correct (lines 2+4) (1) Latching correct (lines 3+5) (1) Forbidden combination (line 6) (1)	3
	(b)			2 1 [6]

Question			Marking details	Marks Available
6.	(a) (b) (c)		$500 \mathrm{k}[\mathrm{Hz}]$ or $0.5 \mathrm{M}[\mathrm{Hz}]$ or $500000[\mathrm{~Hz}]$ Output Q_{c} or $\quad \overline{\mathrm{Q}} \mathrm{c}$ Q_{A} correct in all respects (1) Q_{B} and Q_{C} duration correct (1) Q_{B} and Q_{C} timing correct (1)	1 1 3 [5]
7.	(a) (b)	(i)	Odd no. of NAND inverters (1) Correct connections to 2 -input NAND gate (1) Makes it edge-triggered	2 1 [3]

Question			Answers/Explanatory Notes	Marks Available
1.	(a) (b)	(i) (ii) (i) (ii)	$15 \mathrm{k} \Omega$ (1) $45 \mathrm{k} \Omega$ (1) ecf from (i) Voltage across resistors $=11.3 \mathrm{~V}$ (1) Voltage across $5.1 \mathrm{k} \Omega$ resistor $=6.4 \mathrm{~V}$ $\mathrm{V}_{\text {OUT }}=7.1 \mathrm{~V}$ (1) 12 V (1) Total question mark	2 3 1 [6]
2.	(a) (b)	(i) (ii)	Debounces the signal from the switch Astable [accept clock/pulse generator/relaxation oscillator] Switching thresholds at 2 s and 4 s (1) x 2 Inverted o/p + saturating at 0 V and 5 V (1) (-1) for any additional switching Total question mark	1 1 3 [5]
3.	(a) (b)	(i) (ii) (iii) (i) (ii)	$\begin{aligned} & \mathrm{V}_{\mathrm{OC}}=12.75 \mathrm{~V}(1) \\ & \mathrm{I}_{\mathrm{SC}}=0.125 \mathrm{~A}(1) \\ & \mathrm{R}_{\mathrm{O}}=102 \Omega(1) \text { ecf from (i) } \& \text { (ii) } \end{aligned}$ Equivalent cct with correct values from part (a) (1) Voltage drop across 102Ω resistor $=2.75 \mathrm{~V}$ (1) Current through 102Ω resistor $=0.027$ A (1) Minimum value of load resistance $=371 \Omega(1)$ Total question mark	3 4 [7]
4.	(a) (b)	(i) (ii) (iii)	Graph 3 (1) Graph 1 (1) Graph 4 (1) Correct position and symbol for components (1) x 3 Total question mark	3 3 [6]

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Question} \& Answers/Explanatory Notes \& \begin{tabular}{l}
Marks \\
Available
\end{tabular} \\
\hline 5. \& \begin{tabular}{l}
(a) \\
(b) \\
(c)
\end{tabular} \& \begin{tabular}{l}
(i) \\
(ii) \\
(iii) \\
(i) \\
(ii) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
LED off because logic level at o/p of second inverter \\
\(=\) logic level at \(\mathrm{i} / \mathrm{p}\) of first inverter \(=0\) \\
9 V (1) \\
Substitution/multipliers (1) \\
time taken \(=10.4 \mathrm{~s}\) (1) \\
LED comes on immediately (1) \\
LED stays on for 10.4 s (1) \\
7 V (1) \\
\(280 \Omega\) (1) ecf from (i) \\
\(300 \Omega\) because \(270 \Omega\) would give a current of more than 25 mA (1) \\
Total question mark
\end{tabular} \& \begin{tabular}{l}
3 \\
2 \\
3 \\
[9]
\end{tabular} \\
\hline 6. \& \begin{tabular}{l}
(a) \\
(b) \\
(c)
\end{tabular} \& \& \begin{tabular}{l}
Substitution/multipliers \\
Mark \(=46.2 \mathrm{~ms}\) (1) \\
Space \(=30.8 \mathrm{~ms}\) (1) \\
Correct shape (1) \\
Correct labels and M/S ratio (1) \\
Period \(=46.2+30.8=77 \mathrm{~ms}(1)\) ecf from (a) \\
Frequency \(=\frac{1}{77 m s}=13 \mathrm{~Hz}\) (1) \\
[or substitution into frequency formula/multipliers (1), correct answer (1)] \\
Total question mark
\end{tabular} \& \begin{tabular}{l}
3 \\
2 \\
2 \\
[7]
\end{tabular} \\
\hline 7. \& \& \& \begin{tabular}{l}
Two resistors greater than \(1 \mathrm{k} \Omega\) (1) \\
Ratio resistors \(1: 2\) e.g. \(1 \mathrm{k} \Omega\) at top and \(2 \mathrm{k} \Omega\) at bottom (1) \\
Thermistor - correct symbol (1) \\
Variable resistor (1) \\
Motor connected between output and corresponding voltage rail to give correct switching action e.g. if thermistor is at the top of sensing sub system then the motor will be connected to 0 V rail and vice versa (1) \\
Total question mark
\end{tabular} \& 5

[5]

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Question} \& Answers/Explanatory Notes \& \begin{tabular}{l}
Marks \\
Available
\end{tabular} \\
\hline 8. \& (a)

(b) \& \begin{tabular}{l}
(i)

(ii)

(iii)

 \&

Appropriate scales (1)

Quality of curve (1)

At least 7 accurate points (1)

$\mathrm{V}_{\text {IN }}=1.75 \mathrm{~V}$ ecf from (i)

Voltage across base resistor $1.75-0.7=1.05 \mathrm{~V}$ (1)

$\mathrm{I}_{\mathrm{B}}=\frac{1.05}{1 \mathrm{k} \Omega}=1.05 \mathrm{~mA}(1)$ ecf from previous step

$$
\mathrm{I}_{\mathrm{c}}=\frac{6}{100}=60 \mathrm{~mA}
$$

$\mathrm{h}_{\mathrm{FE}}=\frac{60}{1.05}=57 \quad$ (1) ecf

Total question mark

 \&

3

1

2

2

[8]
\end{tabular}

\hline 9. \& | (a) |
| :--- |
| (b) |
| (c) |
| (d) | \& \& | $\begin{aligned} & 12-4.7=7.3 \mathrm{~V}(1) \\ & \frac{7.3}{25}=0.292 \mathrm{~A}=292 \mathrm{~mA}(1) \\ & 7.3 \times 0.292(1) \text { ecf from (a) } \\ & =2.132 \mathrm{~W}(1) \\ & 292-7=285 \mathrm{~mA} \text { ecf from (a) } \end{aligned}$ |
| :--- |
| Horizontal line at 4.7 V until $\mathrm{I}=285 \mathrm{~mA}$ (1) Gradual downward slope thereafter (1) |
| Total question mark | \& | 2 |
| :--- |
| 2 |
| 1 |
| 2 |
| [7] |

\hline \& \& \& TOTAL \& 60

\hline
\end{tabular}

ET4

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Question} \& Marking details \& Marks Available \\
\hline 3. \& (a) \& (i) \& \begin{tabular}{l}
Any reasonable frequency modulated signal (1) Accurate FM signal consistent with test signal (1)
\[
\begin{aligned}
\& \beta=\frac{\Delta f_{c}}{f_{i}} \\
\& \Delta f_{c}=\beta \times f_{i} \\
\& =3 \times 15 \mathrm{kHz} \\
\& =45 \mathrm{kHz}
\end{aligned}
\] \\
Bandwidth \(=2(1+\beta) f_{i}\)
\[
\begin{aligned}
\& =2(1+3) \times 15 \mathrm{kHz} \\
\& =120 \mathrm{kHz}
\end{aligned}
\] \\
or
\[
\begin{aligned}
\& \text { Bandwidth }=2\left(\Delta f_{c}+f_{i}\right) \\
\& =2(45 \mathrm{kHz}+15 \mathrm{kHz}) \\
\& =120 \mathrm{kHz}
\end{aligned}
\]
\end{tabular} \& [4] \\
\hline 4. \& (a) \& (i) \& \begin{tabular}{l}
\[
\left.\begin{array}{lr}
\frac{9-V_{I N}}{57}=\frac{9-2}{47} \& \\
9-V_{I N}=\frac{7 \times 57}{47} \& \\
9-V_{I N}=8.49 \& \\
V_{I N}=9-8.49=0.51 \mathrm{~V} \& \\
\frac{-9-V_{I N}}{57}=\frac{-9-2}{47} \& \\
-9-V_{I N}=\frac{-11 \times 57}{47} \& \\
-9-V_{I N}=-13.34 \& \\
V_{I N}=-9+13.34=4.34 \mathrm{~V} \& \text { correct formula } / \text { substitution (1) } \\
\& \\
\& \\
\text { correct formula } / \text { substitution (1) } \\
\text { correct answer (1) }
\end{array}\right)
\] \\
Noise, Distortion or Attenuation.
\end{tabular} \& 2

2
1
[5]

\hline
\end{tabular}

ET5

1. (a) Synchronous counters can count at high pulse frequency
(b) (i) Unused states - do not form part of the desired sequence (1)

Stuck states -prevent the system from ever reaching the desired sequence. (1)
(ii) On power up.
(c)

Main sequence (1)
Unused states connected correctly (1)

Total for Q1

2. (a)

One mark for each correct data input
One mark for using Q bar instead of NOT gates
One mark for correct clock inputs
(b)

Step	Current outputs			Next Outputs		
	C	B	A	D_{C}	D_{B}	D_{A}
0	0	0	0	1	0	1
1	1	0	1	0	0	1
2	0	0	1	1	1	0
3	1	1	0	1	1	1
4	1	1	1	0	0	0
5	0	1	0	1	0	1
6	0	1	1	1	1	0
7	1	0	0	1	1	1

All eight states correct, with correct subsequent state
Seven states correct, with correct subsequent state - 3 marks
Six states correct, with correct subsequent state -2 marks
Five states correct, with correct subsequent state -1 mark

Total for Q2

3. (a) Three least significant bits are inputs. The rest are outputs.
(b) The processor reads the contents of the interrupt vector address
(c) (i) These lines protect and recover the contents of the Working register when an interrupt occurs.
(ii) LEDs attached to bits 7, 6, 3 and 2 light (1)
for three seconds and then go out for three seconds. (1)
The processor checks to see if the reset switch has been closed. (1)
(iii) If so, it recovers the working register and goes back to the main program. (1) 2 Otherwise it goes back to the point labelled 'loop' and the sequence repeats.(1)

Total for Q3
4. (a) $\mathrm{V}_{1}=-1 \mathrm{~V}$
(b) $\mathrm{V}_{1}=-7 \mathrm{~V}$
(c)

Staircase waveform with equal height steps (1)
Step height equal to value given in $(a)(1)$
(d) Second amplifier is:

- Inverting - correct circuit diagram; (1)
- unity gain - correct resistor ratio and values > $1 \mathrm{k} \Omega$. (1)

Total for Q4
5. (a) Power supply output voltage should remain constant (1)

Line regulation - when input voltage changes (1)
Load regulation - when output current changes, or equivalents (1)
(b) $\quad \mathrm{V}_{\text {OUT }}=8.5 \mathrm{~V}$
(c)

V_{Z} to non-inverting input (1)
4
Voltage divider across output (1)
Centre of voltage divider to inverting input (1)
Output voltage variable (1)

Total for Q5

6. (a) Binary can produce false readings on transition from one segment to another
(b) $\mathrm{C}=\mathrm{Z}$
$\mathrm{B}=\mathrm{Y} \oplus \mathrm{Z}$ (or $\mathrm{Y} . \overline{\mathrm{Z}}+\overline{\mathrm{Y}} . \mathrm{Z}) \quad$ (2)
Total for Q6
7. (a) $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
(b) Voltage at $\mathrm{X}=7.0 \mathrm{~V}$ or voltage at $\mathrm{Y}=7.5 \mathrm{~V}$, or equivalent (1)
$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$ (1)
(c)

Feedback resistor and input resistor to inverting input (1)
Resistor from non-inverting input to 0 V and input resistor (1)
(d) Feedback resistor $=40 \times$ input resistor (1)

All resistors > $1 \mathrm{k} \Omega$ (1)
Identical resistors in inverting input and non-inverting input connections (1)
Total for Q7
8. (a) (i) $\mathrm{X}=\mathrm{diac}$
(ii) Improve rise time for the gate signal, or equivalent
(b) (i) $\mathrm{Y}=$ Thyristor
(ii) Between P and Q : thyristor is switched on, or equivalent (1)

Elsewhere: thyristor is switched off, or equivalent (1)
(iii) $\mathrm{Z}=$ capacitor

1
(iv) Mention of phase lag, or equivalent (1)

Charge/discharge of capacitor slowed by effect of series resistor, or equivalent (1)
9. (a) (i) Bass cut filter
(iii)

Resistor and capacitor in series (1)
RC network in input circuit (1)
Remainder of circuit correct (1)
(iv) Voltage gain greater than 1 (1)
(b) \quad Break frequency $=970 \mathrm{~Hz}(1)$
10. (a)

Sitting on 5.3 V (1)

Amplitude $=2 \mathrm{~V}$ (1)
(b)

Common base connection to $\mathrm{V}_{\text {IN }}$
Common emitter connection to speaker
Collectors to power rails
Correct symbols
All four elements correct
3
Any three elements correct - 2 marks only
Any two elements correct - 1 mark only
(c) Advantage such as lower quiescent power dissipation

Total for Q10 $\begin{array}{ll}\frac{1}{}\end{array}$

WJEC
$\frac{\text { WJEC }}{\text { CBAC }}$
245 Western Avenue
Cardiff CF5 2YX
Tel No 02920265000
Fax 02920575994
E-mail: exams@wjec.co.uk
website: www.wjec.co.uk

