шјес cbac

GCE MARKING SCHEME

SUMMER 2016

ELECTRONICS ET5
1145/01

INTRODUCTION

This marking scheme was used by WJEC for the 2016 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

1. (a)

	Current Outputs			Next Outputs			
State	\mathbf{C}	\mathbf{B}	\mathbf{A}	$\mathbf{D}_{\mathbf{C}}$	$\mathbf{D}_{\mathbf{B}}$	$\mathbf{D}_{\mathbf{A}}$	
0	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	
1	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	
2	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	
3	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	
4	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	
5	0	0	0	1	1	1	
6	0	1	0	1	1	1	
7	1	1	0	1	0	0	

Five correct 'current' states identified
1 mark
Correct progression into 'Next Output'
States in correct order in table
('Next Outputs = 000 ' for state $4=1$ mark total.)
(b)

Completely correct
1 mark
(c) "An unused state is not part of the main sequence." or equivalent.

1 mark
(d) A stuck state does not allow progression to the main sequence, or equivalent.
(e) (i) $\mathrm{D}_{\mathrm{B}}=\overline{\mathrm{C}}$

1 mark
$\mathrm{D}_{\mathrm{C}}=\mathrm{B}+\overline{\mathrm{A}}$ or $\overline{\mathrm{A} . \overline{\mathrm{B}}} \quad$ one mark per term
(Must be simplest for 2 marks. Any other correct = 1 mark.)

Allow ecf from (e) for D_{B} and D_{C}
Clock connections correct
1 mark
D_{C} correct
D_{B} correct
D_{A} correct
Use of $\overline{\mathrm{Q}}$
(Allow ecf from (e) for D_{B} and D_{C})
2. (a)

Capacitor in series with resistor
1 mark
RC network in input circuit
1 mark
Remainder of circuit correct
1 mark
(b) (i) Correct multipliers in break frequency formula

1 mark
Break frequency $=995 \mathrm{~Hz}$ (accept 994.7 Hz).
(ii) Low frequency voltage gain $=12$ (or -12)

1 mark
1 mark
(c) (i) Filter = treble boost
(ii) Break frequency $=3 \mathrm{kHz}$

Total for Q2
1 mark
1 mark
3. (a) (i) Voltage at $\mathrm{X}=0.1 \mathrm{~V}$

1 mark
(ii) Binary output $=10$

1 mark
(iii) Smallest $\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$ (accept " $>0.4 \mathrm{~V}$ ")
(b) (i) Resolution $=0.0625 \mathrm{~V}(=1 / 16 \mathrm{~V})$ (accept 0.063 V)
(ii) $\mathrm{V}_{\text {REF }}=1.0 \mathrm{~V}$
(iii) No. of resistors $=16$

Total for Q3
1 mark
1 mark
1 mark
1 mark
4. (a) Answer $=\mathrm{D}$ (00011)
(b) movlw b'10010XXX' $\quad(\mathrm{X}=$ don't care $)$

Enable GIE (set bit 7)
1 mark
Enable INTE and disable all others (set bit 4, reset bits 6, 5, 3)
1 mark
(Answer must be 8 bits)
(c) 220 alarm movwf protect ; store contents of W in register called 'protect';

220	alarm	movwf	protect	; store contents of W in register called protect;
221		bsf	PORTA, 2	; output logic 1 to switch on buzzer;
222		call	tensec	; call ten second delay subroutine;
223		btfss	PORTA,0	; test reset switch - ignore next instruction if pressed;
224		goto	alarm	; jump back to line 220;

One mark per correct line
5 marks
(Lower case used in 'PORTA' or upper case in 'alarm' loses 1 mark)
5. (a)

Correct input impedance on both channels $(>10 \mathrm{k} \Omega)$	1 mark
Correct max voltage gain on both channels	1 mark
Rest of circuit correct	1 mark
(Resistor values may differ from specimen answer.)	

(b) \quad Output $=-[(10 \times 2)+(-4 \times 1)]=-16 \mathrm{mV}$

Correct value (16 mV)
1 mark
Correct sign (-)
1 mark
(Allow ecf from (a))
6. (a) (i) $\mathrm{V}_{\mathrm{OUT}}=7.2 \mathrm{~V}$

1 mark
1 mark
(b) (i) $\mathrm{V}_{\mathrm{DIFF}}=(6-7.2)=-1.2 \mathrm{~V}$ - allow ecf from (a)

Correct value
1 mark
Correct sign
1 mark

1 mark
1 mark

1 mark
1 mark
1 mark
7. (a)

(i) Correct connection for switch, labelled A and resistor

1 mark
(ii) Correct connection for switch, labelled B

1 mark
Resistor in series with switch
1 mark
Correct connection for capacitor
(b) (i) Voltage at $\mathrm{X}=0 \mathrm{~V}$
(ii) Voltage above switch B drops from 48 V to 0 V when switch is pressed so voltage at X drops by 48 V to -48 V
thyristor is momentarily reverse biased and switches off, or equivalent
(c) Advantage such as no moving parts so no wear from friction

Total for Q7
8. (a) Link S
(Other links included - zero marks)
(b) $\quad \mathrm{R}_{1}=\mathrm{R}_{2}$
(c) (i) $\mathrm{V}_{\mathrm{OUT}}=2.3 \mathrm{~V}$
(ii) Power dissipation $=0.66 \mathrm{~W}$ (accept 0.7 W)
(iii)

Signal centred on +2.3 V
Sinusoidal signal of amplitude 2 V
(d) (i)

Use of complementary pair
1 mark
Common emitter connection to output
1 mark
Common base connection to input
1 mark
(ii) Max. power dissipation $=18 \mathrm{~W}$
(iii) Advantage such as zero quiescent power dissipation

1 mark
1 mark
1 mark
1 mark
1 mark
1 mark

1 mark

1 mark

1 mark

1 mark
1 mark

