шјес cbac

GCE MARKING SCHEME

SUMMER 2016

ELECTRONICS ET4 1144/01

INTRODUCTION

This marking scheme was used by WJEC for the 2016 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCE ELECTRONICS - ET4

MARK SCHEME - SUMMER 2016

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Question} \& Marking details \& Marks Available \\
\hline 3. \& (b) \& \begin{tabular}{l}
(i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
\[
\beta=\frac{\Delta f_{c}}{f_{i}}=\frac{80}{20}=4
\]
\[
\begin{aligned}
\text { Bandwidth } \& =2(1+\beta) \mathrm{f}_{\mathrm{i}} \\
\& =2(1+4) 20 \mathrm{kHz} \\
\& =200 \mathrm{kHz}
\end{aligned}
\] \\
or
\[
\begin{aligned}
\text { Bandwidth } \& =2\left(\Delta \mathrm{f}_{\mathrm{c}}+\mathrm{f}_{\mathrm{i}}\right) \\
\& =2(80+20) \\
\& =200 \mathrm{kHz}
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
1 or \\
1 \\
1 \\
[5]
\end{tabular} \\
\hline 4. \& (a) \& i)
ii)

i)

ii) \& \begin{tabular}{l}
Pulse Width Modulation

Pulse Amplitude Modulation

 \&

1

\hline
\end{tabular}

\hline
\end{tabular}

Question			Marking details	Marks Available
7.	(a)	i)	Block X = Low Pass Filter	1
		ii)	Block $\mathrm{Y}=$ Sampling Gate	1
		iii)	Block Z = PISO Shift Register	1
	(b)	i)	$2^{12}=4096$	1
		ii)	Input voltage range $=2^{12}(4096) \times 2 \mathrm{mV}=8.192 \mathrm{~V}$	1
		iii)	Clock $\mathrm{A}=39 \mathrm{kHz}$	1
			The highest frequency present at the input is 19.5 kHz (Audio Signal). Nyquist's sampling theorem states that sampling frequency must be at least 2 x highest input frequency, $=2 \mathrm{x} 19.5 \mathrm{kHz}=39 \mathrm{kHz}$, is the lowest frequency permissible	1
			Clock B $=12 \times 39 \mathrm{kHz}=468 \mathrm{kHz}$	1
			12 bits need to be output from the PISO register before the next sample is taken.	1
	(c)	i)	Digital to analogue converter	1
		ii)	Low pass filter	1
				[11]

