wjec cbac

GCE MARKING SCHEME

SUMMER 2016

ELECTRONICS ET4 1144/01

© WJEC CBAC Ltd.

INTRODUCTION

This marking scheme was used by WJEC for the 2016 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCE ELECTRONICS - ET4

MARK SCHEME - SUMMER 2016

Ques	stion		Marking details	Marks Available
3.	(b)	(i)	$\beta = \frac{\Delta f_c}{f_i} = \frac{80}{20} = 4$	1
		(ii)	Bandwidth = $2(1 + \beta)f_i$ = $2(1 + 4)20$ kHz = 200 kHz or	1 1 or
			Bandwidth = $2(\Delta f_c + f_i)$ = $2(80 + 20)$ = 200 kHz	1 1 [5]
4.	(a)	i) ii)	Pulse Width Modulation	1
	(b)	i) ii)	Consistency of Shape (1) Accuracy (1) Pulse Amplitude	2 1 2
]				[6]

Que	estion	Marking details	Marks Available
5.	<i>(a)</i>	V_{REF} / V_X is set at 0V. (therefore it does not matter whether V_{OUT} is at +11V or -11V, the voltage drop across R_1 is the same)	1
	(b)	$V_{OUT} = +11 V \qquad I$ R_1 $V_X = 0 V$ R_2 $V_{IN} = -4 V$	
		$I = \frac{11-0}{R_1} = \frac{11}{R_1} and I = \frac{0-(-4)}{R_2} = \frac{4}{R_2}$	
		The current I is the same so we can equate these equations.	
		$\frac{11}{R_1} = \frac{4}{R_2}$	
		$\frac{11R_2}{4} = R_1$	
		$2.75R_2 = R_1$	
		e.g. $R_1 = 2.75k$, $R_2 = 1 k\Omega$ $R_1 = 5.5k$, $R_2 = 2 k\Omega$ etc	
		OR	
		$V_{R_1}:V_{R_2}$	
		11:4 2.75:1	
		$\therefore R_1 : R_2$	
		.: 2.75:1	
		$R_1 =27.5 k\Omega R_2 =10 k\Omega$	
		Calculation of ratio = 2 marks Correct resistors >1 k Ω = 1 mark	2 1
	(c)	$1.0 \vee <$ Lower Switching Threshold $< 2 \vee$	1
		2.5 V < Upper Switching Threshold < 3.6 V	1 [6]

Question			Marking details	Marks Available
6.	(a)	(i) (ii)	Parity Bit = 1 Voltage	1
	(b)		Logic 0 Logic	2 or 1 1
		(i)		1
		(ii)		1
				1
		(iii)	P_1 is the only bit that fails – this is linked to data bit D_7 , so either P_1 or D_7 is incorrect. There is no way of knowing which bit is wrong as D_7 is not linked to any other parity bit. P_1 or D_7 is incorrect without explanation not acceptable.	1
				[7]

Question			Marking details	Marks Available
7.	<i>(a)</i>	i)	Block X = Low Pass Filter	1
		ii)	Block Y = Sampling Gate	1
		iii)	Block Z = PISO Shift Register	1
	(b)	i)	$2^{12} = 4096$	1
		ii)	Input voltage range = 2^{12} (4096) x 2 mV = 8.192 V	1
		iii)	Clock A = 39 kHz	1
			The highest frequency present at the input is 19.5 kHz (Audio Signal). Nyquist's sampling theorem states that sampling frequency must be at least 2x highest input frequency, = $2 \times 19.5 \text{ kHz} = 39 \text{ kHz}$, is the lowest frequency permissible	1
			Clock B = 12 x 39 kHz = 468 kHz	1
			12 bits need to be output from the PISO register before the next sample is taken.	1
	(c)	i)	Digital to analogue converter	1
		ii)	Low pass filter	1
				[11]

Question	Marking details	Marks Available
8. <i>(a)</i>	Low Pass Filter	1
(b)	$X_{\rm C} = \frac{1}{2\pi f {\rm C}}$ = $\frac{1}{2\pi \times 50 \times 22 \times 10^{-9}}$ = 144.7 k $\Omega \approx 145 {\rm k}\Omega$ substitution and multipliers = 1 correct answer = 1	1 1
(c)	$0.145 \mathrm{k}\Omega \;(0.15 \mathrm{k}\Omega)$ or (b) $\div 1000$	1
(<i>d</i>)	$f_{b} = \frac{1}{2\pi RC}$ $f_{b} = \frac{1}{2 \times \pi \times 2400 \times 22 \times 10^{-9}}$ $f_{b} = 3.014 \text{ kHz}$ substitution and multipliers = 1	1
	correct answer $= 1$	1
(e)	Gain 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	
	Shape consistent with (a) Break frequency consistent at 70% point with (d) (3.014 kHz)	1 1
		[8]

GCE Electronics ET4 MS Summer 2016