шјес cbac

GCE MARKING SCHEME

SUMMER 2016

ELECTRONICS ET1 1141/01

INTRODUCTION

This marking scheme was used by WJEC for the 2016 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

MARK SCHEME - SUMMER 2016

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Question} \& Marking detail \& Marks available

\hline 3. \& (a)

(b) \& \& \begin{tabular}{l}
$$
\mathrm{Q}=\mathrm{C} \cdot \mathrm{~A}+\mathrm{B} \cdot \overline{\mathrm{~A}}
$$

Correct transfer of data to Karnaugh map Each term correct (ecf from map drawn; max. 2 marks)
$$
\mathrm{D}_{0}, \mathrm{D}_{1}, \mathrm{D}_{3} \text { and } \mathrm{D}_{4} \text { to } 0 \mathrm{~V}
$$

$\mathrm{D}_{2}, \mathrm{D}_{5}, \mathrm{D}_{6}$ and D_{7} to 5 V

Completely correct 1 mark

(allow ecf from (a))

 \&

$$
\begin{aligned}
& 1 \\
& 2
\end{aligned}
$$

1
\end{tabular}

\hline \& \& \& \& 4

\hline 4. \& | (a) |
| :--- |
| (b) | \& | (i) |
| :--- |
| (ii) |
| (iii) | \& | (logic) 1 |
| :--- |
| $\overline{\mathrm{A}}+\mathrm{B} \quad$ alternative $\overline{\overline{\mathrm{B}} \cdot \mathrm{A}}$ $\mathrm{Q}=\overline{\mathrm{D}} . \mathrm{C} \quad\{\text { interim step }(\overline{\mathrm{D}} . \mathrm{C}+\overline{\mathrm{D}} . \mathrm{D})\}$ $\begin{aligned} & =\overline{\overline{(\overline{\mathrm{A}}+\mathrm{B})}} \cdot \overline{\mathrm{A}} \quad \text { (line 1) } \\ & =(\overline{\mathrm{A}}+\mathrm{B}) \cdot \overline{\mathrm{A}} \quad \text { (line 2) } \\ & =\overline{\mathrm{A}} \cdot \overline{\mathrm{~A}}+\mathrm{B} \cdot \overline{\mathrm{~A}} \\ & =\overline{\mathrm{A}} \cdot(1+\mathrm{B}) \\ & =\overline{\mathrm{A}} \end{aligned}$ |
| Correct application of DeMorgan's theorem (line 1) Correct simplifications (2 marks) |
| Alternative solution for lines 1 and 2 $\begin{aligned} & =\overline{\mathrm{A} \cdot \overline{\mathrm{~B}}+\mathrm{A}} \\ & =\overline{\mathrm{A} \cdot \overline{\mathrm{~B}} \cdot \overline{\mathrm{~A}}} \\ & =(\overline{\mathrm{A}}+\mathrm{B}) \cdot \overline{\mathrm{A}} \end{aligned}$ | \& | 1 |
| :--- |
| 1 |
| 1 |
| 1 2 |

\hline \& \& \& \& 6

\hline
\end{tabular}

Question			Marking detail		Marks available
7.	(a) (b) (c)		Switch and resistor across power rails and connected to R Correct orientation of components When the D-type is reset the output $\overline{\mathrm{Q}}$ will be at logic $\mathbf{1}$ and the LED will be off (both correct for mark) Q goes from 0 to 1 on $1^{\text {st }}$ and $3^{\text {rd }}$ clock pulse Q goes from 1 to 0 on rising edge of RESET only $\overline{\mathrm{Q}}$ is inverse of Q		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
					6
8.	(a) (b) (c)	(i) (ii) (i) (ii)	$\mathrm{R}_{\mathrm{F}}=40 \mathrm{k} \Omega$$\mathrm{V}_{\text {IN }}=1.67 \mathrm{~V} \text { allow } \frac{15}{9}$$\mathrm{V}_{\text {IV }} / \mathrm{V}$ -3 -2 -1 1 2 3 $\mathrm{V}_{\text {out }}$ column correct - Positive gradient sl - Correct plotting of p \{check line passes th - Saturation at 15 V (i) LOWER $\left\{\mathrm{V}_{\text {IN }}(\mathrm{SAT})\right.$ Accept value 1.36 V (ii) No change	$\mathrm{V}_{\text {out }} / \mathrm{V}$ -15 -15 -9 9 15 15 ough the origin $(1.0,9.0)\}$ ise curve)	1 1 1 1 1 1 1 1
					8

Question			Marking detail	Marks available
9.	(a)	(i)	$12 \mathrm{k} \Omega$	1
		(ii)	voltage gain -15	1
		(iii)	$\mathrm{V}_{\text {out }}=-13.5 \mathrm{~V} \quad\{$ ecf gain in a (ii) $\}$ (both minus signs = 1 mark)	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
		(iv)	$\begin{aligned} & \frac{3 \times 10^{6}}{15}\{\text { ecf } \text { gain in a (ii) \}} \\ & 200 \mathrm{k}[\mathrm{~Hz}] \quad 0.2 \mathrm{M}[\mathrm{~Hz}] \quad 200000 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
	(b)	(i) (ii)	$6 \mathrm{k} \Omega$ -14 V saturated (sign is neutral)	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
	(c)		bw is Reduced (owtte) / Halved / value 100 kHz If value given allow ecf (a)(iv)	1
	(d)		$\Delta \mathrm{t}=\frac{28}{5}=5.6$ (1 mark) $\mu \mathrm{s}$ (1 mark) (unit consistent with number)	2
				11

