| Surname | Centre
 Number | Candidate
 Number |
| :--- | :--- | :--- | :--- |
| Other Names | | |

GCE A level

1144/01

ELECTRONICS - ET4

A.M. TUESDAY, 14 June 2016

1 hour

For Examiner's use only		
Question	Maximum Mark	Mark Awarded
1.	3	
2.	4	
3.	5	
4.	6	
5.	6	
6.	7	
7.	11	
8.	8	
Total	50	

ADDITIONAL MATERIALS

In addition to this examination paper, you will need a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.
Write your name, centre number and candidate number in the spaces at the top of this page.
Answer all questions.
Write your answers in the spaces provided in this booklet.

INFORMATION FOR CANDIDATES

The total number of marks available for this paper is 50 .
The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.
You are reminded to show all working. Credit is given for correct working even when the final answer given is incorrect.

INFORMATION FOR THE USE OF CANDIDATES

Preferred Values for resistors

The figures shown below and their decade multiples and sub-multiples are the E24 series of preferred values.
$10,11,12,13,15,16,18,20,22,24,27,30,33,36,39,43,47,51,56,62,68,75,82,91$.

Standard Multipliers:

Prefix	Multiplier
T	$\times 10^{12}$
G	$\times 10^{9}$
M	$\times 10^{6}$
k	$\times 10^{3}$

Filters
$\mathrm{f}_{\mathrm{b}}=\frac{1}{2 \pi \mathrm{RC}}$
$\mathrm{X}_{\mathrm{C}}=\frac{1}{2 \pi \mathrm{fC}}$
$\mathrm{X}_{\mathrm{L}}=2 \pi \mathrm{fL}$
$\mathrm{Z}=\sqrt{\mathrm{R}^{2}+\mathrm{X}_{\mathrm{C}}^{2}}$
$\mathrm{f}_{0}=\frac{1}{2 \pi \sqrt{\mathrm{LC}}}$
$R_{D}=\frac{L}{r_{L} C}$
$\mathrm{Q}=\frac{2 \pi \mathrm{f}_{0} \mathrm{~L}}{\mathrm{r}_{\mathrm{L}}}$
$\mathrm{Q}=\frac{\mathrm{f}_{0}}{\mathrm{~B}}$
Modulation $\quad \mathrm{m}=\frac{\left(\mathrm{V}_{\max }-\mathrm{V}_{\text {min }}\right)}{\left(\mathrm{V}_{\text {max }}+\mathrm{V}_{\text {min }}\right)} \times 100 \%$
Depth of modulation
$\beta=\frac{\Delta \mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{i}}}$
Modulation index
resolution $=\frac{\mathrm{i} / \mathrm{p} \text { voltage range }}{2^{\mathrm{n}}}$
PCM

Bandwidth $\left.=2\left(\Delta \mathrm{f}_{\mathrm{c}}+\mathrm{f}_{\mathrm{i}}\right) \quad\right\}$
Bandwidth $=2(1+\beta) \mathrm{f}_{i}$
Dynamic resistance

Transmitted FM Bandwidth

Radio receivers $\quad \mathrm{C}=\frac{1}{4 \pi^{2} \mathrm{f}_{0}{ }^{2} \mathrm{~L}}$

Answer all questions.

1. (a) Complete the following block diagram for the simple radio receiver, using the functional blocks in the list below.

(b) Match each part of the simple radio receiver with its function. One has been done for you.

Creates a non-zero average signal

Generates an electrical signal from electromagnetic waves

Selects the required radio station

The frequency response of the filter is shown in the following graph.

(a) What is the name of the type of filter which has this frequency response?
(b) A Frequency Modulated signal having the following frequency spectrum is connected to the input of the filter.

Sketch the frequency spectrum of the filter output, labelling all relevant frequencies.

Amplitude

(c) A square wave signal having the following frequency spectrum is connected to the input of the filter.

Amplitude

Sketch the frequency spectrum of the filter output, labelling all relevant frequencies. [1]
Amplitude

Frequency/kHz
(d) An Amplitude Modulated signal having the following frequency spectrum is connected to the input of the filter.

Amplitude

Sketch the frequency spectrum of the filter output, labelling all relevant frequencies.
Amplitude

Frequency/kHz
3. (a) Two modulation techniques used for radio communication are Amplitude Modulation and Frequency Modulation.

The test signal below is used to modulate the carrier signal using these modulation techniques. Use the axes provided to sketch the output of the modulation process in each case.

(b) A 260 M Hz carrier is frequency modulated by an audio signal in the range 100 Hz to 20 kHz . The frequency deviation is 80 kHz . Calculate:
(i) the modulation index;
(ii) the bandwidth of the resulting FM waveform.
4. The following graphs show different ways in which Pulse Modulation can be used in a communication system. For each case:
(i) state which method is being used, either PPM, PWM or PAM;
(ii) sketch the original modulating signal.
(a) (i) Type of Pulse Modulation used

Amplitude
(ii) Sketch the modulating signal below. The unmodulated signal is shown as a dashed line.

Amplitude

(a) Why are the switching thresholds for this circuit symmetrical?
\qquad
\qquad
(b) Determine the values of R_{1} and R_{2}.
\qquad
$\mathrm{R}_{1}=$ \qquad $R_{2}=$ \qquad
(c) Suggest the input threshold voltages for a different Schmitt trigger that would allow the regeneration of the original digital signal from the noisy signal shown below.

Lower switching threshold \qquad
Upper switching threshold \qquad
6. (a) A computer system uses odd parity. Start, stop and parity bits have to be added before a signal can be transmitted.
The computer system transmits the character ' Y '. The ASCII code for the character ' Y ' is 1011001.
(i) What is the logic state of the parity bit?
(ii) Complete the graph to show the transmitted signal for the character ' Y '. Label the start, stop and parity bits.

(ii) In a second transmission the following data and parity bits are received from a distant source.

D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	P_{3}	P_{2}	P_{1}	P_{0}
1	1	1	1	0	1	0	0	1	0	1	1

There is a single error in the received transmission. Determine where the error is located and therefore write down the correct version of the received data.

D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	P_{3}	P_{2}	P_{1}	P_{0}

(iii) In a third transmission the following data and parity bits are received from a distant source.

D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	P_{3}	P_{2}	P_{1}	P_{0}
1	0	1	1	1	1	0	0	1	1	1	1

There is still only a single error in the received transmission. Explain why it is not possible to reconstruct the correct version of the received data.
7. The block diagram shows a Pulse Code Modulation transmitter.

(a) Identify the blocks labelled X, Y and Z .
(i) Block $\mathrm{X}=$ \qquad
(ii) Block $Y=$
(iii) Block $Z=$
(b) (i) How many sampling levels are available using a 12-bit code?
(ii) What is the minimum input voltage range required for the ADC to achieve a resolution of at least 2 mV ?
\qquad
\qquad
(iii) The audio signal contains frequencies in the range 150 Hz to 19.5 kHz .

For each of clocks A and B, state the minimum frequency and explain why you have selected that particular frequency.
I. Clock A frequency

Explanation

II. Clock B frequency
 Explanation

(c) The receiver of a different Pulse Code Modulation system is constructed from the following sub-systems:

- 2 MHz clock
- Schmitt trigger
- Low pass filter
- SIPO shift register
- Digital to Analogue Converter (DAC).

The following graphs show the output of two sub-systems in the PCM receiver.

(i) What is the name of the sub-system that has the form of output shown by Graph A?
(ii) What is the name of the sub-system that has the form of output shown by Graph B?
8. The following circuit is used as a filter.

(a) What is the name of this type of passive RC filter?
(b) Calculate the reactance of the capacitor at 50 Hz .
\qquad
\qquad
\qquad
(c) What is the reactance of the capacitor at 50 kHz ?
\qquad
(d) Calculate the break frequency for this filter.
\qquad
\qquad
\qquad
(e) Sketch the frequency response of this filter.

