Oxford Cambridge and RSA

GCE

Electronics

Unit F615: Communications Systems
Advanced GCE

Mark Scheme for June 2015

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

Question			Answer	Mark	Guidance
1	a	I	```set intensity / brightness; of each pixel; one after the other / from left to right in successive rows / from top to bottom (on the screen);```	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	ignore raster scan
		ii	as each pulse arrives; start to scan a new row of pixels;	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	not just new line
			pixels per second $=320 / 80 \mu=4.0 \times 10^{6}$; bandwidth $=2.0 \mathrm{MHz}$;	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	no ecf for incorrect pixel rate
	iii iv		```frame display time \(=220 \times 80 \mu=17.6 \mathrm{~ms}\); refresh rate \(=57 \mathrm{~Hz}\); greater than 25 Hz ; so image is flicker-free;```	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	accept range of 20 to 30 Hz ecf from calculated refresh rate if less than 25 Hz
	b		two more cables needed; allows separate video signals (for three pixels in a cluster); for red, green and blue pixels;	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	ignore RGB
2	a			3	correct sinusoidal shape with constant amplitude [1] correct amplitude [1] correct period [1] accept any phase

Question			Answer	Mark	Guidance
	b		$\begin{array}{\|l} \hline \mathrm{Z} ; \\ \mathrm{Y} ; \\ 113 ; \\ \mathrm{X} \\ \hline \end{array}$	2	```113 kHz for [1] X,Y and Z correct for [1] accept }X\mathrm{ and }Y\mathrm{ interchanged```
	C	i	break frequency from 5 kHz to 10 kHz ; use of $f_{0}=\frac{1}{2 \pi R C}$; C between 50 pF and 100 pF ;	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	no ecf for incorrect break frequency
	ii		transfer characteristic - diode only conducts in forward bias; - with voltage drop; - which rises steeply with increasing current; circuit operation - only negative parts of signal amplified; - carrier frequency filtered out by capacitor and (feedback) resistor	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	accept any value below 1 V look for high quality responses to circuit operation accept (rectified) signal smoothed by capacitor and resistor accept treble cut filter as capacitor and feedback resistor ignore references to gain
3	a		output has a frequency of 27.2 MHz (for zero volt signal); frequency increases/decreases with increasing signal voltage; amplitude of output remains constant;	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	ignore amplitude
	b		$\begin{aligned} & \text { bandwidth }=200 \mathrm{kHz} \\ & \text { maximum frequency }=40 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	no ecf on incorrect bandwidth
	C		removes noise / interference added to FM signal; by restoring FM signal to a square wave / digital signal;	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	
	d		output of monostable is a fixed duration pulse; for each cycle/pulse of FM carrier; so mean voltage of monostable output changes for changing frequency of FM carrier; (treble cut) filter removes carrier frequencies; smoothing / averaging the pulses (producing a copy of the original signal);	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	accept rising / falling edge for cycle accept pulse spacing depends on frequency of carrier

Question			Answer	Mark	Guidance
4	a		ST threshold calculation - $\quad I=13 / 42 \mathrm{k}=3.09 \times 10^{-4} \mathrm{~A}$; - $V=3.09 \times 10^{-4} \times 27 \mathrm{k}=8.4 \mathrm{~V}$; RG calculation - $\frac{4 \times 8.4}{T}=\frac{13}{15 \mathrm{k} \times 3.3 \mathrm{n}}$ - $T=1.3 \times 10^{-4} \mathrm{~s}$, so $f=7.8 \mathrm{kHz}$;	$\begin{aligned} & 1 \\ & 1 \end{aligned}$ 1 1	method shown [1] accept $13 \times(27 / 42)$ not $13 \times(-27 / 42)$ correct value [1] method shown [1] correct value [1] accept anything that rounds to 8 kHz with correct method for [2]
	b	i		2	comparator with any input to M [1] correct input and output labels [1]
		ii	voltage at input; sets mark-space ratio of output;	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	ignore amplitude / signal ignore frequency ignore description of op-amp behaviour
	C	i		5	use of $G=-\frac{R_{f}}{R_{i n}}$ to calculate low frequency gain of (-) 0.51 [1] use of $f_{0}=\frac{1}{2 \pi R C}$ to calculate break frequency of 3.7 kHz [1] suitable log axes labelled [1] correct shape [1] correct break frequency [1] accept $4,40,400 \ldots$ as frequency axis labels
		ii	break frequency is close to maximum signal frequency that can be correctly coded; need at least two samples per signal cycle; maximum signal frequency should be $7.8 / 2=3.9 \mathrm{kHz}$;	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	

Question			Answer	Mark	Guidance
5	a		Any of the following for [1]; - put metal shielding around cables - keep cables away from other systems - keep cables short idea that interference is signal from other circuits;	1 1	accept use optical fibre [1] as cladding stops outside signals [1] accept use frequency / digital coding [1] as intereference can be removed by ST (at receiver) [1]
b			any two of the following: - both cables follow same path - pick up the same interference - so can be removed by difference amplifier	2	not noise
	C		signal at A is copied to C by voltage follower; signal at A is inverted and placed at B; signals arrive at D and E with interference; difference amplifier cancels out interference; and recreates (double) the original signal (at F);	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	
6	a		each station is allocated a channel / carrier frequency; with a unique range of frequencies / bandwidth;	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	allow frequency for carrier
	b	i	channel bandwidth $=9 \mathrm{kHz}$; channels $=(1607-527) / 9=120$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	ecf 4.5 kHz gives 240 channels for [1]
		ii	much larger bandwidth per channel; so fewer channels / stations in the band;	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	
iii			EITHER FM (receivers) can eliminate noise; by using limiters / Schmitt triggers; to restore shape of signal; OR AM (receivers) can't eliminate noise; because it affects amplitude; so can't be separated from signal by demodulator;	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	accept interference for noise, accept less susceptible to noise

Question		Answer	Mark	Guidance
C	1	any five of the following; - pulse sets flip-flop - makes register load word from input - AND gate with one input high outputs pulses - clock pulses appear at CK - contents of register / bits appear at output in turn - counter output increases on each clock pulse - Iogic system resets flip-flop and counter at end	5	
	ii	need one for each bit of the word at input; one for the start bit (before the word); one for the stop bit (at the end of the word);	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	
		Total	107	
		QWC	3	Overleaf
		$=$	110	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

