GCE

Electronics

Unit F614: Electronic Control Systems
Advanced GCE

Mark Scheme for June 2015

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

Annotations

Annotation	Meaning of annotation	
	$B P$	Blank Page - this annotation must be used on all blank pages within an answer booklet (structured or unstructured) and on each page of an additional object where there is no candidate response.

Question	Expected answer	Mark	Additional guidance
1a	Input to G output from D Connections through capactitors	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	
1b	Voltage across $2.2 \mathrm{M} \Omega=12-2.7=9.3 \mathrm{~V}$ Current through $2.2 \mathrm{M} \Omega=9.3 / 2.2 \times 10^{6}=4.22 \times 10^{-6}$ $\mathrm{R} 1=2.7 / 4.22 \times 10^{-6}=639 \mathrm{k} \Omega$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Any answer which rounds to $640 \mathrm{k} \Omega$
1c	$80 \mathrm{mS}=0.08 \mathrm{~S}$	1	77 mS - 83 mS
1di	So that the voltage at D can wobble up and down (wtte) By a large amplitude (wtte)	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	Reference to ac Or negative comment about avoiding saturation
1dii	$\begin{aligned} & \text { pd across resistor }=12-7=5 \mathrm{~V} \\ & \mathrm{R} 2=(12-7) / 0.04=125 \Omega \text { (ecf voltage) } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	
1e	$G=-g_{m} \times R_{D S}=-0.08 \times 125=-10$ Values from 1c and 1dii multiplied (ecf) Minus sign	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	

Question	Expected answer	Mark	Additional guidance
2c	4 tri-states Common enable connected to read Outputs connected to D_{0-3} Inputs connected to I_{0-3}	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	
2d	Maximum 2 from: Storing programme Storing look up table Storing data from input port Storing data from calculations	2	
2ei	In CPU	1	
2eii	Register Containing the address Of the next instruction	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \end{aligned}$	Allow memory in CPU (wtte)

Question	Expected answer	Mark	Additional guidance
3a	2^{n} Evidence of using 7 address lines	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$2^{7}=128$ [2]
3b	128 (ecf) $\times 6=768$	1	
3c	$2^{5}-1=31$	1	
3d	Disables chip (wtte) One from: - Preventing read or write function (wtte) - High impedance state on data lines (wtte) - So that other memory modules can access the data bus	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	
3 e	$\begin{aligned} & \text { Values all } 0 \mathrm{~V} \text { or } 5 \mathrm{~V} \\ & \mathrm{~A}_{5}=5 \mathrm{~V}, \mathrm{~A}_{4}=5 \mathrm{~V}, \mathrm{~A}_{3}=5 \mathrm{~V}, \mathrm{~A}_{2}=0 \mathrm{~V}, \mathrm{~A}_{1}=5 \mathrm{~V}, \mathrm{~A}_{0}=0 \mathrm{~V} \\ & \overline{\mathrm{CE}}=0 \mathrm{~V} \\ & \text { Read }=0 \mathrm{~V} \\ & \overline{\text { Write }}=5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	ecf 1 instead of 5 ecf 1 instead of 5

Question	Expected answer	Mark	Additional guidance
4a	Output all postive Full wave rectification Max voltage 4.6 V (by eye) 0 V flat around zero crossing	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	
4b	Capacitor in parallel with resistor	1	
4c	Max voltage 4.6 V (ecf) Output wobbles all >0 V Correct (asymmetric ripple) shape voltage drop to approx. half max voltage [allow min between 2 V and 3 V] Period $=10 \mathrm{~ms}$ 14 ms	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	

Question	Expected answer	Mark	Additional guidance
4d	Max 2 from: Smoother output Fixed voltage More efficient Lighter/smaller	2	
4 e	Oscillator produces high freq ac for transformer Transformer changes large ac voltage to small ac voltage Rectifier turns ac to dc Smoother keeps voltage above zero all the time Comparator compares ouput with constant voltage from reference Opto-isolator turns on oscillator when output too low	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Allow current change

Question	Expected answer	Mark	Additional guidance
6a	MOVI sn, $84 \quad(\mathrm{n}=0-7)$ OUT Q, sn RET	$\begin{aligned} & 2 \\ & 1 \\ & 1 \end{aligned}$	[1] for MOVI sn, [1] for 84
6b	chkbutton: MOVI sm, 10 IN sq, I AND sq, sm JZ chkbutton RET	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Fine to reverse order of first two lines AND sm, sq JZ label at IN sq, I
6c	After 20 s Turn the rl LED glow and the buzzer sound Wait 0.25 s Turn on the gm LED and turn off the rl LED and buzzer Wait 0.25 s Repeat the sequence of rl \& buzzer then gm 8 times	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	
6d	RCALL wait1ms used in a loop Attempt to use nested loops used with different counters Product of starting values is 20000 One loop correct Correctly operating loops with RET at end of delay time	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	example wait20s: MOVI S5, 64 bigloop: MOVI S6, C8 loop: RCALL wait1ms DEC S6 JNZ loop DEC S5 JNZ bigloop RET

Quality of Written Communication

The candidate expresses complex ideas extremely clearly and fluently. Sentences and paragraphs follow on from one another smoothly and logically. Arguments are consistently relevant and well structured. There will be few, if any, errors of grammar, punctuation and spelling.

The candidate expresses straightforward ideas clearly, if not always fluently. Sentences and paragraphs may not always be well connected. Arguments may sometimes stray from the point or be weakly presented. There may be some errors of grammar, punctuation and spelling, but not such as to suggest a weakness in these areas.

1 The candidate expresses simple ideas clearly, but may be imprecise and awkward in dealing with complex or subtle concepts. Arguments may be of doubtful relevance or obscurely presented. Errors in grammar, punctuation and spelling may be noticeable and intrusive, suggesting weaknesses in these areas.

0
The language has no rewardable features.

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
GROUP
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

