GCE

Electronics

Unit F615: Communications Systems
Advanced GCE

Mark Scheme for June 2014

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

These are the annotations, (including abbreviations), including those used in scoris, which are used when marking

Annotation	Meaning of annotation
BP	Blank Page - this annotation must be used on all blank pages within an answer booklet (structured or unstructured) and on each page of an additional object where there is no candidate response.

Subject-specific Marking Instructions

Accept $+5 \mathrm{~V}, 1$ and high as equivalent throughout

Accept $0 \mathrm{~V}, 0$ and low as equivalent throughout
Accept numerical answers which round up to values in mark scheme
Method marks require correct values substituted into correct equation. Accept k, μ etc as powers of ten.
$V_{g}=V_{s} \frac{R_{b}}{R_{b}+R_{t}}=15 \times \frac{2.5 \mathrm{k}}{2.5 \mathrm{k}+12.5 \mathrm{k}}=2.5 \mathrm{~V}$

Question			Answer	Mark	Guidance
1	a		$R(e d), G(r e e n)$ and B (lue) control intensity of pixels; which are red, green and blue; one after the other along a line; line sync signals start of a new line; frame sync signals end of last line / start of first line (of a frame) / start of a new frame (of lines);	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	accept brightness
	b		packet has start and stop bit; payload is (7-2 =) 5 bits; number of levels $=2^{5}=32$;	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	accept reverse calculation e.g. $\log _{2} 30=4.9 \approx 5$ accept $2^{7}=128$ for [1]
	C		bit rate $=2 \times 170=340 \mathrm{MHz}$; packet rate $=340 / 7=49 \mathrm{MHz}$;	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	accept ecf incorrect bit rate e.g. $170 / 7=24 \mathrm{MHz}$ for [1]
	d		$\begin{aligned} & \text { period }=5.5 \times 2 \times 10^{-3}=11 \times 10^{-3} \mathrm{~s} ; \\ & \text { frequency }=1 / 11 \times 10^{-3}=91 \mathrm{~Hz} ; \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	allow ecf on incorrect period from 10 ms to 12 ms for [1]
2	a	i		3	voltage divider between supply rails connected to V_{g} [1] correct ratio to hold terminal at 2.5 V [1] accept 2.4 V or 2.6 V justified by appropriate calculation [1] EITHER $\begin{aligned} & I=\frac{V}{R}=\frac{15}{12.5 \times 10^{3}+2.5 \times 10^{3}}=1.0 \times 10^{-3} \mathrm{~A} \\ & V=I R=1.0 \times 10^{-3} \times 2.5 \times 10^{3}=2.5 \mathrm{~V} \end{aligned}$ OR $V_{g}=V_{s} \frac{R_{b}}{R_{b}+R_{t}}=15 \times \frac{2.5 \mathrm{k}}{2.5 \mathrm{k}+12.5 \mathrm{k}}=2.5 \mathrm{~V}$ allow ecf on incorrect voltage for [2]

Question		Answer	Mark	Guidance
	ii		1	capacitor with one terminal directly connected to the gain control terminal and the other terminal labelled V_{s} [1] accept missing arrow accept label input instead of V_{s}
	iii	$1.0 \mathrm{~V} ;$ to keep V_{g} between 3.5 V and 1.5 V ; so that changes in V_{S} can result in changes of gain / so that V_{g} remains on linear part of transfer characteristic;	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	accept 1.1 V or 0.9 V ignore references to distortion of signal being modulated
b	i	$\begin{aligned} & C=\frac{1}{2 \pi \times 220 k \times 5 k} \\ & 145 \mathrm{pF} \end{aligned}$	1 1	accept 150 pF to 30 pF for [2] ecf 50 Hz gives 14500 pF for [1]
	ii		3	sine wave with period of $200 \mu \mathrm{~s}$ [1] amplitude 200 mV [1] centre value +300 mV [1] accept any phase

Question			Answer	Mark	Guidance
3	a		converts f.m. signal to square wave; to remove noise / to remove interference / to provide triggering edge for monostable / clean signal;	1 1	accept regenerates/restores f.m. signal accept converts f.m. to digital signal
	b			4	```correct NAND gate monostable with NOT gate at output [1] R at least 10 k\Omega [1] RC = 3 \mus [1] use of T=0.7RC to justify values [1]```
	C	i		4	show calculation of break frequency [1] $\frac{1}{2 \pi \times 32 \mathrm{k} \times 1 \mathrm{n}}=5.0 \times 10^{3} \mathrm{~Hz}$ show calculation of low frequency gain [1] $\frac{32 \mathrm{k}}{3.2 \mathrm{k}}=10$ draw gain of 10 below 5 kHz [1] dropping at 45° above 5 kHz [1] allow ecf for graph on incorrect calculation of b.f. or gain
		ii	maximum signal frequency $=5 \mathrm{kHz}$; bandwidth $=5 \times 5=25 \mathrm{kHz}$;	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	Iook for bandwidth equal to break frequency from (c)(i) allow ecf on incorrect bandwidth for (c)(i) for [2]

Question			Answer	Mark	Guidance
4	a		$\begin{aligned} & \text { non-inverting (plus) input must go above } 0 \mathrm{~V} \text {; } \\ & \text { so current in feedback resistor }=13 / 52 \mathrm{k}=250 \mu \mathrm{~A} \text {; } \\ & \text { voltage across input resistor }=250 \mu \times 16 \mathrm{k}=4 \mathrm{~V} \text {; } \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \end{aligned}$	Iook for explicit statement, not just implicit in calculations accept correct use of voltage divider rule for [2] not use of gain formula e.g. $G=\frac{R_{f}}{R_{\text {in }}}$
	b		$\begin{aligned} & 8=-13 \frac{\Delta t}{120 \mathrm{k} \times 330 \mathrm{p}} ; \\ & \Delta t=24 \mu \mathrm{~s} ; \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	```correct substitution [1] final value [1] accept \(12 \mu \mathrm{~s}\) for [1] ecf: 15 V at opamp output gives \(21 \mu \mathrm{~s}\) for [1]```
	C		time between samples is $48 \mu \mathrm{~s}$; need at least two samples per cycle of input; input frequency less than $1 / 96 \mu=10 \mathrm{kHz}$;	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	ecf from (b) e.g. 12μ s gives 24μ s between samples allow ecf from incorrect sample time allow ecf from incorrect time for one cycle
	d	i		2	each correct entry for [1]
		ii	any one of the following - reduces output impedance of system - provides current to drive the next stage - provides isolation for demodulator and next stage	1	
5	a		infrared	1	accept IR, (visible) light
	b		intensity / strength / height of pulses falls; as they lose energy / are absorbed;	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	accept pulse shape changes for [1] accept pulse picks up noise or interference for [1] accept pulse is (internally) reflected for [1]
	C		Iow noise (from fibre); pulses can be regenerated at receiver; by Schmitt trigger / limiter;	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	accept low interference (from outside fibre)

Question			Answer	Mark	Guidance
	d	i	many electrical devices emit radio waves ; signal intensity drops as waves move away from source; so interference can easily alter signal / give low signal-tonoise ratio;	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	accept other radio stations broadcast signals accept any reason for signal strength dropping with distance
		ii	code the signal in the wave frequency (as in FM or PWM); as frequency can be restored at receiver; noise / interference affects amplitude (not frequency);	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	accept digital alternative: code the signal as pulses of waves [1] as used in digital transmission systems (e.g. DAB) [1] as pulses can restored at receiver [1]
6	a		allows many phones to communicate with one mast; FDM gives each phone a different range of frequencies; so that they don't interfere/disrupt with each other;	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	accept channel
	b		$\begin{aligned} & 915.625-909.375=6.25 \mathrm{MHz} ; \\ & \text { phones }=6250 / 64=97 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	accept 97.6 or 98 for [1]
	c		signal bandwidth $=64 \mathrm{k} / 2=32 \mathrm{kHz}$; FM bandwidth $=5 \times 32 \mathrm{k}=160 \mathrm{kHz}$; phones $=6250 / 160=38$ or 39 ;	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \end{aligned}$	allow ecf on incorrect signal bandwidth accept just correct answer for [3]
	d			2	correct circuit with correct symbols [1] correct labels on correct circuit including 0 V rail [1] accept inductor with any number of loops accept earth symbol for 0 V
7	a			5	oscillator correct [1] mixer correct [1] ... filter - amplifier - demodulator [3] ... filter - demodulator - amplifier [2] ... amplifier - filter - demodulator [2] ... anything - filter - demodulator [1] filter - demodulator - anything [1]
	b		$\begin{aligned} & C=\frac{1}{4 \pi^{2} \times 4.7 \mathrm{n} \times 902.5 \mathrm{M}^{2}} ; \\ & C=6.6 \mathrm{pF} ; \end{aligned}$	1	look for correct transposition and substitution

Question			Answer	Mark	Guidance
	C		selective receiver can block out neighbouring stations; superhet has fixed frequency filter to do selecting; so can have steeper edges; than variable LC circuit in simple receiver;	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	accept (fixed frequency) stacked filter
	d			4	correct input resistance of $100 \mathrm{k} \Omega$ [1] correct circuit [1] all resistors between $1 \mathrm{k} \Omega$ and $10 \mathrm{M} \Omega$ [1] feedback resistor $49 \times$ pull-down resistor [1] ecf: for correct inverting amplifier circuit [1] with gain of -50 with resistors between $1 \mathrm{k} \Omega$ and $10 \mathrm{M} \Omega$ [1] and input resistance of $100 \mathrm{k} \Omega$ [1]
8	a	i	voltage of output is determined by (binary) word at input;	1	accept level of analogue signal
		ii	number of levels $=2^{6}=64$; $64-1=63$ steps so range is $63 \times 0.1=6.3 \mathrm{~V}$;	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	accept 63 is largest decimal value for 6 bit binary number
	b		a rising edge at L ; reads (counter) word at input; and displays/stores it at output (until next rising edge at L);	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	not pulse or high at L
	C		counter has $2^{6}=64$ steps for each sample; sample frequency $=1024 \mathrm{kHz} / 64$ ($=16 \mathrm{kHz}$);	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	not just $2^{6}=64$
	d		(each pulse at \mathbf{P} makes) counter output increase (by 1); making DAC output A increase (by 100 mV); until \mathbf{A} is greater than input; when the opamp/comparator output L rises; and latch transfers current counter signal to output;	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	
9	a		destination address to identify the intended receiver; source address to identify the sending computer; payload contains information e.g. text, video, music; checksum to allow errors to be detected / corrected;	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	not just the name of each part, [1] for all four named without explanation accept correct explanation with incorrect name

Question		Answer	Mark	Guidance
b	b	each computer - waits until no signal on cable before transmitting; - stops if packet is corrupted by another signal; - waits for a (random) time before trying again;	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	accept TDM alternative: - each computer has a different time slot [1] - and can only use line in this time [1]
C	c	(serial) transmitter needs switch; so that only one (output) device is connected to cable at a time / transmitter can be disconnected from cable; receivers don't affect the signals on the cable;	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	accept receiver always connected to detect packets / clashes

Quality of Written Communication

[^0]OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

[^0]: 3 The candidate expresses complex ideas extremely clearly and fluently. Sentences and paragraphs follow on from one another smoothly and logically. Arguments are consistently relevant and well structured.
 There will be few, if any, errors of grammar, punctuation and spelling.
 $2 \quad$ The candidate expresses straightforward ideas clearly, if not always fluently.
 Sentences and paragraphs may not always be well connected.
 Arguments may sometimes stray from the point or be weakly presented.
 There may be some errors of grammar, punctuation and spelling, but not such as to suggest a weakness in these areas
 $1 \quad$ The candidate expresses simple ideas clearly, but may be imprecise and awkward in dealing with complex or subtle concepts.
 Arguments may be of doubtful relevance or obscurely presented.
 Errors in grammar, punctuation and spelling may be noticeable and intrusive, suggesting weaknesses in these areas.
 0
 The language has no rewardable features.

