GCE

Electronics

Unit F614: Electronic Control Systems
Advanced GCE

Mark Scheme for June 2014

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

Quality of Written Communication

The candidate expresses complex ideas extremely clearly and fluently. Sentences and paragraphs follow on from one another smoothly and logically. Arguments are consistently relevant and well structured. There will be few, if any, errors of grammar, punctuation and spelling.

2 The candidate expresses straightforward ideas clearly, if not always fluently. Sentences and paragraphs may not always be well connected. Arguments may sometimes stray from the point or be weakly presented. There may be some errors of grammar, punctuation and spelling, but not such as to suggest a weakness in these areas.

The candidate expresses simple ideas clearly, but may be imprecise and awkward in dealing with complex or subtle concepts. Arguments may be of doubtful relevance or obscurely presented. Errors in grammar, punctuation and spelling may be noticeable and intrusive, suggesting weaknesses in these areas.
$0 \quad$ The language has no rewardable features.

question	grade	expected answer	mark	additional guidance
1a	E	2.9 V	1	Allow 2.8 V - 2.9 V
1bi	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{C} \\ & \mathrm{C} \\ & \hline \end{aligned}$	G from switch is -5 V S is 0 V so $\mathrm{VGS}=-5 \mathrm{~V}$ VGS < threshold so MOSFET not conducting	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Resistance of MOSFET very high
1bii	$\begin{aligned} & \hline \mathrm{E} \\ & \mathrm{D} \\ & \mathrm{D} \end{aligned}$	line at 0 from $t=0$ to $t=4$ oscillation from 4 to end around 0 V same amplitude, shape and phase as input	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	

question	grade	expected answer	mark	additional guidance
2a	$\begin{aligned} & \hline \mathrm{E} \\ & \hline \end{aligned}$	six D-type flip-flops $5 \times \mathrm{Q}$ to next D clocks connected together and labelled serial in correctly labelled at first D outputs correctly labelled at all Qs	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	
2 bi	$\begin{aligned} & \mathrm{C} \\ & \mathrm{D} \\ & \mathrm{~A} \end{aligned}$	first two clock periods correct periods 3 \& 4 correct periods 5, 6 correct	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	correct shape but changing on falling edge [2]
2bii	A	110001 no ecf	1	beware of reversing order of bits
2biii	C	49 (ecf from bii)	1	

question	grade	expected answer	mark	additional guidance
3a	$\begin{aligned} & \mathrm{A} \\ & \mathrm{E} \\ & \mathrm{~B} \\ & \mathrm{C} \\ & \mathrm{E} \end{aligned}$	go: MOVI Sn, 04 IN Sm, I AND Sn, Sm JZ go RET	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$n \neq m n \& m \leq 7$ OR AND Sm, Sn Lose 1 mark if SUB Sm, Sn JNZ go (does not work if X pressed or other I float high)
3b	$\begin{aligned} & \text { C } \\ & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \hline 44 \\ & 4 \mathrm{C} \\ & 55 \\ & 5 \mathrm{D} \\ & 77 \\ & \text { first one correct } \\ & \text { next two correct } \\ & \text { last two correct } \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	
3c	D C A D B E	Max 7 of: Initialise pointer to start of look-up table output number from table move pointer to next item in table check to see if at end of table if so reset to start of table Mask for X check to see if switch is pressed if not go back and output next number from table if pressed return to main program	7	Make dice show 1 Allow loop 6 times owtte

question	grade	expected answer	mark	additional guidance
3d	D	make Q7 high	1	$0<j \leq 7,0<k \leq 7, j \neq k$
	B	without changing Q0-Q6	1	beep: MOVI Sk, 80
	C	inititialise counter with C8 (hex for 200)	1	
	C	time delay	1	EOR S0,Sk
	A	make Q7 low without changing Q0-Q6	1	OUT Q,S0
	E	return	1	MOVI Sj, C8
				lbl: RCALL wait1ms DEC Sj JNZ lbl
				$\begin{array}{ll} \text { EOR } & \text { S0,Sk } \\ \text { OUT } & \text { Q,S0 } \end{array}$
				RET

question	grade	expected answer	mark	additional guidance
4a	$\begin{aligned} & \mathrm{E} \\ & \mathrm{E} \end{aligned}$	diodes used to produce rectifier with correct polarity	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	
4b	CD	Max 2 of: unstabilised has (a large) ripple (wtte) unstabilised output voltage depends on ac input (wtte) regulated output has no/very little ripple (wtte) regulated output fixed/not dependent on input (wtte) regulator keeps the voltage at a constant voltage (wtte)	2	
4c	$\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	correct reference with zener and resistor connected to op-amp input MOSFET used correctly at output negative feedback from regulated output	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	

question	grade	expected answer	mark	additional guidance
6a	DDEE	Max 4 of: - subroutines can be re-used - subroutines can be tested separately - programs easier to read - programs easier to write due to structure - saves memory because subroutine only needs to be stored once	4	1 mark for state, 1 mark for explain
6b	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{~A} \end{aligned}$	value retrieved from stack and stored in program counter to instruction after RCALL stack pointer changed by 1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	
6c	$\begin{aligned} & \mathrm{A}^{*} \\ & \mathrm{~A}^{*} \\ & \mathrm{~A}^{*} \\ & \mathrm{~A}^{*} \\ & \mathrm{~A}^{*} \end{aligned}$	instructions unchanged program counter $=2 \mathrm{E}$ stack pointer changed by 1 (56 or 58) all but one data value unchanged one data value now 2C (address 56, 57 or 58)	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	Allow 2D

question	grade	expected answer	mark	additional guidance
7a	$\begin{aligned} & \mathrm{E} \\ & \mathrm{E} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { input connected to } V_{G} \\ & \text { output connected to } V_{D} \\ & \text { each input connected through a capacitor } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	
7bi	$\begin{aligned} & \hline \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{~A} \end{aligned}$	from graph $\mathrm{g}_{\mathrm{m}}=0.05 \mathrm{~S}$ $\begin{aligned} & \mathrm{R}=200 \Omega \\ & \text { gain }=-0.05 \times 200=-10\left(\text { ecf } g_{m}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	transconductance calculated 200Ω used gain -ve
7bii	$\begin{aligned} & \mathrm{A}^{*} \\ & \mathrm{~A}^{*} \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{V} \text { across } 200 \Omega: 18-10=8 \mathrm{~V} \\ \mathrm{I}=8 / 200=0.04 \mathrm{~A} \\ \text { from graph } \mathrm{V}_{\mathrm{G}}=2.3 \mathrm{~V} \\ \mathrm{I} \text { in } 470 \mathrm{k} \Omega: 2.3 / 470000=4.89 \mu \mathrm{~A} \\ \mathrm{~V} \text { across } \mathrm{R}: 10-2.3=7.7 \mathrm{~V} \text { (ecf from } 8 \mathrm{bii}) \\ \mathrm{R}=7.7 / 4.89 \times 10^{-6}=1600 \mathrm{k} \Omega \\ \hline \end{array}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	
7c	$\begin{aligned} & \text { A* } \\ & \text { A* } \end{aligned}$	MOSFETs have different characteristics Affects bias design not so sensitive to different MOSFETs	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	

question	grade	expected answer			mark	additional guidance
8ai	$E$$E$$E$				111	1 mark for each correct row
		Q	U	L		
		0	open	closed		
		1	closed	open		
		High impedance	open	open		
8aii	$\begin{aligned} & \hline D \\ & D \\ & D \end{aligned}$	logic to turn off both analogue switches with E logic turns off both analogue switches when E high logic turns reproduces A at Q (for one or more states of E)			$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	
8b	$\begin{aligned} & \mathrm{D} \\ & \mathrm{E} \end{aligned}$	to disconnect the so that more than bus	from th ry can	ed to the same	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	
8c	$\begin{aligned} & \hline \mathrm{E} \\ & \mathrm{E} \\ & \mathrm{E} \\ & \mathrm{D} \\ & \mathrm{D} \\ & \mathrm{~B} \end{aligned}$	tristates between 2Qs to each Data 2Ds to each data Read operates tris write operates clo A0 routes read and	Q correc		$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	

question	grade	expected answer	mark	additional guidance
8 d	E	information lost when power is turned off	1	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
GROUP
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

