GCE

Electronics

Unit F612: Signal Processors
Advanced Subsidiary GCE

Mark Scheme for June 2014

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

These are the annotations, (including abbreviations), including those used in scoris, which are used when marking

Annotation	Meaning of annotation
\checkmark	Tick
3	Cross
2	Unclear
BP	Blank Page - this annotation must be used on all blank pages within an answer booklet (structured or unstructured) and on each page of an additional object where there is no candidate response.
BOD	Benefit of doubt
EE	Effective evaluation
L1	Level 1
L2	Level 2
L3	Level 3
L4	Level 4
NAQ	Not answered question
OFR	Own figure rule
SEEN	Noted but no credit given
TV	Too vague
\wedge	Omission

Subject-specific Marking Instructions

Accept $+5 \mathrm{~V}, 1$ and high as equivalent throughout

Accept $0 \mathrm{~V}, 0$ and low as equivalent throughout
Accept numerical answers which round up to values in mark scheme

Method marks require correct values substituted into correct equation. Accept k, μ etc as powers of ten.

Question			Answer	Mark	Guidance
	C		amplitude of output signal should be $3 \times 4.7=14 \mathrm{~V}$; top and bottom of signal flattened / clipped; because op-amp output saturates at +13 V and -13 V ;	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \end{aligned}$	not just top or bottom
	d	i	0 V	1	
		ii	$\begin{aligned} & 1.2 / 47 \times 10^{3}=2.55 \times 10^{-5} \mathrm{~A} \text {; } \\ & 26 \mu \mathrm{~A} . \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	method [1] answer [1] accept just $25 \mu \mathrm{~A}$ for [1]
		iii	$\begin{aligned} & 1.2 \times 2.55 \times 10^{-5}=3.06 \times 10^{-5} \mathrm{~W} \\ & 31 \mu \mathrm{~W} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	accept ecf incorrect (ii) e.g. $25 \mu \mathrm{~A}$ gives $30 \mu \mathrm{~A}$ for [2] method [1] answer [1] accept use of $P=V^{2} / R$
		iv	$\begin{aligned} & V_{\text {out }}=4.7 \times 1.2=5.6(2) \mathrm{V} ; \\ & I_{\text {out }}=5.6 / 1.2 \times 10^{3}=4.7 \times 10^{-3} \mathrm{~A}, P_{\text {out }}=5.6 \times 4.7 \times 10^{-3}=27 \mathrm{~mW} ; \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \end{aligned}$	accept ecf incorrect (a) accept 26 mW for [2], ecf: 1.2 mW for [1]
4	a			2	D to $\overline{\mathrm{Q}}$ on all three flip-flops [1] $\overline{\mathrm{Q}}$ to next clock for first two flip-flops [1]
	b		Y is a decoder; which converts word from counter into a different word; Z is a seven-segment (LED) display; which displays a number; .	$\begin{aligned} & 1 \\ & 1 \\ & \\ & 1 \\ & 1 \end{aligned}$	not converter accept binary to seven segment conversion not binary to decimal conversion accept binary (number) for word
	C	i	$\begin{aligned} & 3 ; \\ & 100 ; \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	
		ii	$\begin{aligned} & \text { six has CBA = 110; } \\ & \text { when CBA = } 111 \times \text { goes high; } \\ & \text { making CBA }=001 / \text { resetting CB and setting A; } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	accept seven has CBA = 111 not resets counter to one
		iii	$\begin{aligned} & 10=0.5 R \times 330 \times 10^{-6} \\ & R=61 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	use of correct rule [1] answer [1] accept just $60 \mathrm{k} \Omega$ for [1]

Question			Answer					Mark	Guidance
5	a	1	Z	C	B	A	X	1	completely correct for [1]
			one	0	0	1	0		
			four	1	0	0	0		
		ii	$X=\overline{\mathrm{C}} \cdot \overline{\mathrm{~B}} \cdot \overline{\mathrm{~A}}+\overline{\mathrm{C}} \cdot \mathrm{~B} \cdot \overline{\mathrm{~A}}+\overline{\mathrm{C}} \cdot \mathrm{~B} \cdot \mathrm{~A} ;$ EITHER $\begin{aligned} & \mathrm{X}=\overline{\mathrm{C}} \cdot(\overline{\mathrm{~B}} \cdot \overline{\mathrm{~A}}+\mathrm{B} \cdot \overline{\mathrm{~A}}+\mathrm{B} \cdot \mathrm{~A}) \\ & \mathrm{X}=\overline{\mathrm{C}} \cdot(\overline{\mathrm{~A}} \cdot(\overline{\mathrm{~B}}+\mathrm{B})+\mathrm{B} \cdot(\overline{\mathrm{~A}}+\mathrm{A}))=\overline{\mathrm{C}} \cdot(\overline{\mathrm{~A}}+\mathrm{B})=\overline{\mathrm{C}} \cdot \overline{\mathrm{~A}}+\overline{\mathrm{C}} \cdot \mathrm{~B} ; \end{aligned}$ OR $\begin{aligned} & \overline{\mathrm{C}} \cdot \overline{\mathrm{~B}} \cdot \overline{\mathrm{~A}}+\overline{\mathrm{C}} \cdot \mathrm{~B} \cdot \overline{\mathrm{~A}}=\overline{\mathrm{C}} \cdot \overline{\mathrm{~B}} \cdot \overline{\mathrm{~A}}+\overline{\mathrm{C}} \cdot \mathrm{~B} \cdot \overline{\mathrm{~A}}+\overline{\mathrm{C}} \cdot \overline{\mathrm{~A}}=\overline{\mathrm{C}} \cdot \overline{\mathrm{~A}} \\ & \overline{\mathrm{C}} \cdot \mathrm{~B} \cdot \overline{\mathrm{~A}}+\overline{\mathrm{C}} \cdot \mathrm{~B} \cdot \mathrm{~A}=\overline{\mathrm{C}} \cdot \mathrm{~B} \cdot \overline{\mathrm{~A}}+\overline{\mathrm{C}} \cdot \mathrm{~B} \cdot \mathrm{~A}+\overline{\mathrm{C}} \cdot \mathrm{~B}=\overline{\mathrm{C}} \cdot \mathrm{~B} \end{aligned}$					1 1	allow ecf from incorrect (i) for initial expression [1] valid use of rules to link required answer to truth table expression completely.
		iii	EITHER OR					3	OR gate to generate output for $\mathrm{X}=\overline{\mathrm{C}} . \overline{\mathrm{A}}+\overline{\mathrm{C}} . \mathrm{B}[1]$ AND/NOT gates to generate $\overline{\mathrm{C}} . \overline{\mathrm{A}}$ [1] AND/NOT gates to generate $\overline{\mathrm{C}} . \mathrm{B}+[1]$ if they state $X=\bar{C} \cdot \overline{(A}+B$, then AND gate to generate output for $\mathrm{X}=\overline{\mathrm{C}} . \overline{(\mathrm{A}}+\mathrm{B}$ [1] NOT gate to generate $\overline{\mathrm{C}}$ [1] NOT / OR gate to generate $\overline{(A}+B)[1]$ accept correct circuit without algebra for [3]
	b		(at end of sequence) Z is low because CBA $=100 / C$ is high; no pulses at Z to be counted / counter output stays at 100; X goes high when pulse at S resets counter / CBA to 000;					$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	accept counter frozen

Question								Answer	Mark	Guidance
6	a	i	power amplifier						1	accept current amplifier / power amp
		ii	increases current (of a signal); because loudspeaker has low resistance / current from volume control too low / loudspeaker needs high current;						$\begin{aligned} & 1 \\ & 1 \end{aligned}$	ignore power
	b								5	correct feedback arrangements [1] - look for clear use of necessary blobs or bypass symbols correct ratio of feedback resistors [1] use of $G=1+\frac{R_{F}}{R_{D}}$ to justify values [1] all resistors between $1 \mathrm{k} \Omega$ and $10 \mathrm{M} \Omega$ [1] correct pull-down resistor / input impedance [1] if inverting amplifier correctly drawn, then - input resistor of $47 \mathrm{k} \Omega$ [1] - feedback resistor of $2.4 \mathrm{M} \Omega$ [1]
	c	i		$f_{0}=\frac{1}{2 \pi \times 10 k \times 1 \mu} ;$ 16 Hz ;					1	ecf: $100 \mathrm{k} \Omega$ gives 1.6 Hz for [1]
		ii							3	break in the curve at 16 Hz [1] horizontal portion of curve at gain of 10 [1] gain drops at 45° below 16 Hz [1] accept ecf from (c)(i)

Question			Answer	Mark	Guidance
7	a			4	correct process box [1] correct input box ($\mathrm{n}=$ any integer) [1] correct decision box [1] accept variant below for any value from 0 F to 00 not $\mathrm{Sn}<\mathrm{XX}$ if decision box correct, then correct flow direction labels [1] not a for b
		b	S6 is 10000010; so lock is closed and yellow LED on; S 5 is 01110001 ; so lock is open and green LED is on;	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	accept Q7, Q1 are high and rest low accept Q6, Q5, Q4.Q0 are high and rest low
		C	```(when red LED glows) press V, W and X (simultaneously); (until) yellow LED glows; then press U, W and X (simultaneously); for at least the next 2 s; lock opens for 8s (and green LED comes on);```	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	not after 2 s ignore references to returning control to a

Question			Answer	Mark	Guidance
		d		4	lock closed all the time i.e. msb 1 to output [1] all LEDs on all the time i.e. 3 Isb 1 to output [1] square wave to O3 [1] 4 ms per cycle [1] ignore boxes with syntax errors/incorrect shape
8	a		$\begin{aligned} & V_{\text {out }}=A\left(V_{\text {in }}-V_{\text {out }}\right)=A V_{\text {in }}-A V_{\text {out }} ; \\ & V_{\text {out }}+A \times V_{\text {out }}=A \times V_{\text {in }}, \text { so } V_{\text {out }}(1+A)=A V_{\text {in }} \text { and } \frac{V_{\text {out }}}{V_{\text {in }}}=\frac{A}{1+A} \end{aligned}$	1 1	correct substitution of $V_{\text {in }}$ and $V_{\text {out }}$ for V_{+}and V_{-}[1] accept V_{+}for $V_{\text {in }}$ if used throughout correctly clear rearrangement to gain formula [1]
	b		1	1	accept 0.99 , but not 0.9

Question		Answer	Mark	Guidance
C	C	output/V	3	straight line through the origin [1] accept freehand line slope of +1.00 [1] with ecf from b saturating at $+13 \vee$ and $-13 \vee[1]$

Quality of Written Communication

$3 \quad$ The candidate expresses complex ideas extremely clearly and fluently.
Sentences and paragraphs follow on from one another smoothly and logically.
Arguments are consistently relevant and well structured.
There will be few, if any, errors of grammar, punctuation and spelling.
2
The candidate expresses straightforward ideas clearly, if not always fluently.
Sentences and paragraphs may not always be well connected.
Arguments may sometimes stray from the point or be weakly presented.
There may be some errors of grammar, punctuation and spelling, but not such as to suggest a weakness in these areas
$1 \quad$ The candidate expresses simple ideas clearly, but may be imprecise and awkward in dealing with complex or subtle concepts.
Arguments may be of doubtful relevance or obscurely presented.
Errors in grammar, punctuation and spelling may be noticeable and intrusive, suggesting weaknesses in these areas.
0 The language has no rewardable features.

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

