GCE

Electronics

Advanced GCE

Unit F614: Control Systems

Mark Scheme for June 2013

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

Subject-specific Marking Instructions

Quality of Written Communication

3 The candidate expresses complex ideas extremely clearly and fluently. Sentences and paragraphs follow on from one another smoothly and logically. Arguments are consistently relevant and well structured. There will be few, if any, errors of grammar, punctuation and spelling.

2 The candidate expresses straightforward ideas clearly, if not always fluently. Sentences and paragraphs may not always be well connected. Arguments may sometimes stray from the point or be weakly presented. There may be some errors of grammar, punctuation and spelling, but not such as to suggest a weakness in these areas.

1 The candidate expresses simple ideas clearly, but may be imprecise and awkward in dealing with complex or subtle concepts. Arguments may be of doubtful relevance or obscurely presented. Errors in grammar, punctuation and spelling may be noticeable and intrusive, suggesting weaknesses in these areas.
$0 \quad$ The language has no rewardable features.

Question			Answer	Marks	Guidance
1	(a)		Capacitors $\times 2$ output to D , input to G	2	
	(b)		calculate current $I=3 / 170 \times 10^{3}=1.76 \times 10^{-5}$ calculate voltage across $R \quad V=12-3=9 \mathrm{~V}$ calculate $\quad \mathrm{R}=9 / 1.76 \times 10^{-5}=5.1 \times 10^{5}=510 \mathrm{k} \Omega$	3	Could solve by ratios: If incorrect allow 1 mark for correct ratio.
	(c)	(i)	2.2 V	1	
		(ii)	current from graph 40 mA voltage across 120Ω resistor 4.8 V $\mathrm{V}_{\mathrm{D}}=12-4.8=7.2 \mathrm{~V}$	3	
		(iii)	```correct units conversion find }\Delta divide change in current by voltage to calculate }\mp@subsup{g}{m}{}=0.05 S (ecf```	3	
		(iv)	$\begin{aligned} & \hline-g_{\mathrm{m}} \text { from 1ciii } \\ & \times 120 \Omega \end{aligned}$	2	

Question			Answer	Marks	Guidance
2	(a)		one mark to point to max of 6: - opto-isolator correct - oscillator correct - transformer correct - rectifier correct - smoother correct - voltage correct - comparator correct.	6	
	(b)		all positive correct shape peak at $\sim 2.6 \mathrm{~V}$ by eye OV flat around transistion voltage/V	4	
	(c)		LED emits light when input high owtte phototransistor conducts when light incident owtte	2	BOD low impedance when light incident
	(d)		reduces voltage increases current/energy efficient/power efficient	2	

| Question | | Answer | Marks | Guidance |
| :--- | :--- | :--- | :--- | :---: | :---: |
| $\mathbf{3}$ | (a) | data bus connects cpu, memory, input port and output port
 arrows show data going to cpu, memory and output
 port (optionally data to input port)
 control bus connects cpu, memory, input port and output
 portarrows show control going to memory, output port
 and input port (optionally cpu)
 address bus connects cpu and memory (and optionally
 both input port and output port - not just one)
 arrows show data going to memory (and to input port
 and output port if connected) not cpu | 6 | |
| (b) | fetch instruction from memory
 EITHER pointed at by program counter
 OR store instruction in instruction register
 increment program counter
 execute instruction (in instruction register)
 correct order | 5 | Allow PC to address bus | |

Question		Answer	Marks	Guidance
4	(a)	MOVI Sn, 04 IN Sm, I AND $\mathrm{Sm}, \mathrm{Sn} \quad$ or \quad AND Sn, Sm	$\begin{aligned} & 2 \\ & 1 \\ & 1 \end{aligned}$	1 mark for 04 n and m different numbers 0-7
	(b)	showf: MOVI S2, E2 OUT Q, S2 RET	3	
	(c)	MOVI S5, C8	2	1 mark for C8
	(d)	bell sounds turn bell off after 200 ms sounds 3 times display does not change	4	
	(e)	soundb: INC S2 OUT Q, S2 RCALL wait200ms RCALL wait200ms RCALL wait200ms DEC S2 OUT Q, S2 RET	8	Turn on bell Without affecting display Wait attempt Long time (>200ms) Exactly 600 ms Turn off bell Without affecting display return

Question			Answer	Marks	Guidance
6	(a)		reference, difference amp, power amp, motor, position sensor	1	
(b)			$\begin{aligned} & \hline 30 / 47 \\ & +1 \end{aligned}$	2	1.64
	(c)		potentiometer	1	
	(d)	(i)	$\begin{aligned} & 2-5= \\ & -3 V \end{aligned}$	2	subtraction
		(ii)	$-3 \times 1.6=-4.8 \mathrm{~V}$ ecf from di	1	
		(iii)	to start with $\mathrm{D}=-4.8 \mathrm{~V}$ and motor turns (quickly) One from: - the voltage at P gets smaller as dish turns - as P gets small $\mathrm{P}-\mathrm{R}=\mathrm{E}$ gets smaller - When $P=R, E=0 V$ and $D=0 V$ so D gets smaller and motor slows when $\mathrm{P}=\mathrm{R}$ motor stops.	4	None zero D causes motor to turn Some explanations about calculation of voltages Motor slows as correct position approached Motor stops at correct position
	(e)		on-off feedback drives at full power until ref so hunts/never settles at one position proportional feedback slows as it approaches ref so gently moves to required position	4	sensible comment distinguishing on-off from proportional

Question			Answer					Marks	Guidance
7	(a)		information lost when power removed					1	
	(b)		CE 0 0 0 0 1 1 1 1 All comb All comb CK corre E correc	Read 0 0 1 1 0 0 1 1	Write 0 1 0 1 0 1 0 1 Read and	CK 0 1 0 1 1 1 1 1 tee	\mathbf{E} 1 1 0 0 0 0 0 0 0	3	
	(c)		$\overline{C E}, \overline{R e a d}$ and Write initially high hold Read high throughout make data high make CE low and Write low make Write highand/or CE high.					5	data must be high before CE and Write both low Allow pulse write/CE low for 2 marks with other held low Sequence incorrect or no sequence can only get data mark
	(d)		3 cells per address $x 2$ addresses (=6)					2	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

