GCE

Electronics

Advanced Subsidiary GCE

Unit F612: Signal Processors

Mark Scheme for June 2013

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

| Question | | | Marks | Guidance | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ | (a) | (i) | | not next to + input
 look for the word INPUT near the circle | |
| | (b) | (i) | $1+16 \mathrm{k} / 10 \mathrm{k} ;$
 $2.6 ;$ | | |

| Question | | Answer | Marks | Guidance |
| :--- | :--- | :--- | :--- | :--- | :--- |
| (iii) | | straight line through the origin (1)
 correct gradient of $+2.6(1)$
 accept gradient of gain of (b)(i)
 saturating at +13 V and -13 V (1) | | |

Question		Answer	Marks	Guidance
2	(a)	rising edge (i.e. 0 V to +5 V) at CK ; high/1/+5V at D; copied to Q;	3	accept clock (input) for CK not hold/send/pulse CK high, accept goes high not just flip-flop transparent
	(b)	$\begin{aligned} & R \text { at least } 1 \mathrm{k} \Omega ; \\ & R C=8.0 \mathrm{~s} \end{aligned}$	2	look for 8000 ms
	(c)		4	D to $\overline{\mathrm{Q}}$ for all three flip-flops (1) $\overline{\mathrm{Q}}$ to CK between flip-flops (1) R in parallel (1) all five labels correct (1) ignore connection from C to R
	(d)		4	A changes on each falling edge of P except on final spike (1) B changes on each falling edge of A (1) Q goes high on first fall of P and stays high until spike on C (1) Q goes low and stays low when C spikes high (1) ignore changes to C

Question			Answer	Marks	Guidance
3	(a)		where bytes / words; enter and leave the microcontroller / copied to and from registers;	2	look for idea of sets of bits in parallel, not serial accept download a program for [1]
	(b)		any three of the following, (1) each: stores byte/data/word; from input (port) / adc; for the output (port); for calculations; for comparison;	3	ignore state / information / number not for processing
	(c)		outputs/stores/creates a byte/word/binary code; which represents a voltage;	2	not just digital signal, high or low, 1 or 0, binary not analogue signal / wave / variable signal
	(d)		$\begin{aligned} & \text { 67; } \\ & \text { 11010010; } \end{aligned}$	2	
	(e)		any two of the following reason-explanation pairs, (1) + (1) each: - smaller circuit - because only one chip - can be easily updated/changed - because program easily changed - cheaper circuit - because of economies of scale / mass production - easier to design - because program can be simulated - different circuits from the same hardware - because different program can be loaded	4	look for two reason-explanation pairs for full marks ignore reasons to do with supply rails

Question			Answer	Marks	Guidance
	(b)			1	must be completely correct for [1]
	(c)		10010000 placed at output; switch red LED on and turn on / activate MOSFET /speaker; 10000000 placed at output; turn off MOSFET / speaker, red LED on, (green LED off); test if input port $=0000$ 1000; if yes then switch is pressed so return to start of program; otherwise switch MOSFET on again ...;	7	```accept Q7 and Q4 high ignore leave green LED off, not buzzer accept Q7 high ecf accept buzzer for speaker accept I3 high not just pass to c accept repeats program loop, goes back to b```
7	(a)			4	microphone first and loudspeaker last (1) voltage amp anywhere before power amp (1) tone control anywhere before power amp (1) power amp just before loudspeaker (1)

Question		Answer	Marks	Guidance
(b)			4	$\begin{aligned} & \hline \text { correct circuit (1) } \\ & R_{\text {IN }}=30 \mathrm{k} \Omega(1) \\ & R_{\mathrm{F}}=20 \times R_{\text {IN }}(1) \end{aligned}$ quote rule and substitute into $G=(-) \frac{R_{f}}{R_{i n}}$ (1) ignore labels for input and output
(c)	(i)	has a variable gain (from 1 to 0); allows changes of loudness of the sound (from the speaker);	2	not increases gain/signal, accept adjusts gain/signal ignore volume, control
	(ii)	has a gain which depends on frequency (owtte); EITHER to get the right amount of bass and treble from the speaker OR to compensate for transfer characteristic of microphone OR to keep correct balance for sound (played back at wrong volume); OR remove unwanted hiss / rumble	2	accept cuts/boosts different frequencies ignore tone, control
	(iii)	increases the amplitude/voltage/signal; because signal (from microphone) is too small / weak (for sound to be heard from speaker);	2	ignore amplify, accept boost

Question		Answer	Marks	Guidance
8	(a)		3	all four correct for (3) three or two correct for (2) one correct for (1)
	(b)	$\begin{aligned} & \mathrm{R}=\mathrm{C} \cdot \mathrm{~A} ; \\ & \mathrm{X}=\overline{\mathrm{C}} \cdot \overline{\mathrm{~B}} \cdot \mathrm{~A}+\mathrm{C} \overline{\mathrm{~B}} \cdot \overline{\mathrm{~A}} \end{aligned}$	2	accept C.B.A accept $X=A \overline{B+C})+C \overline{B+A}$
	(c)	$C=\square-R$	3	R correct for (1) X correct for (2) accept any NOT/AND/OR circuit which generates correct output ecf from incorrect (b)

APPENDIX 1

Quality of Written Communication

3	The candidate expresses complex ideas extremely clearly and fluently. Sentences and paragraphs follow on from one another smoothly and logically. Arguments are consistently relevant and well structured. There will be few, if any, errors of grammar, punctuation and spelling.
2	The candidate expresses straightforward ideas clearly, if not always fluently. Sentences and paragraphs may not always be well connected. Arguments may sometimes stray from the point or be weakly presented. There may be some errors of grammar, punctuation and spelling, but not such as to suggest a weakness in these areas.
1	The candidate expresses simple ideas clearly, but may be imprecise and awkward in dealing with complex or subtle concepts. Arguments may be of doubtful relevance or obscurely presented. Errors in grammar, punctuation and spelling may be noticeable and intrusive, suggesting weaknesses in these areas.
0	The language has no rewardable features.

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

