GCE

Electronics

Advanced GCE

Unit F614: Control Systems

Mark Scheme for June 2012

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2012
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

Question		Answer	Marks	Guidance
1	(a)	V across resistor is $-2--15=13 \mathrm{~V}$ $\mathrm{I}=13 / 330$ (use of 330Ω resistor) I=0.039A calculation using Ohm's law 39mA (conversion to mA)	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	
	(b)	capacitor between input and circuit capacitor connected to gate	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	
	(c)	Max 2 of - To connect high impedance/low current sources - to lower impedance/higher current circuits - dc offset	2	Reference to current [1] amplification of current (for next block) [1]
	(d)	output same shape and in phase same amplitude offset by -2 V	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	
2	(a)	ring around thermistor	1	
	(b)	$\begin{aligned} & \text { Total } R=9.1 \times 10^{3}+8.2 \times 10^{3}=17.3 \times 10^{3} \\ & I=15 /\left(9.1 \times 10^{3}+8.2 \times 10^{3}\right)=8.67 \times 10^{-4} \mathrm{~A} \\ & V=8.67 \times 10^{-4} \times 8.2 \times 10^{3}=7.1 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	or any potential divider formula with correct answer [3]

Question			Answer	Marks	Guidance
	(c)		Any 4 of following: - non-inverting input > inverting input - output (saturated) high (OR +13V) - VGS>threshold - MOSFET conducting OR MOSFET has low resistance (wtte) - current in heater OR voltage across heater (wtte)	4	
	(d)	(i)	Any 4 of following: - Turns off when too hot/turns on when too cold - Explanation of why heater turn off reference to voltages in circuit - It takes time for soldering iron to warm/cool - It takes time for the thermistor to respond - \quad Soldering iron keeps cooling/warming for some time even when heater off/on - Reference to hunting - Repeatedly turning on and off / On/off system - Explanation of thermistor effect on V_{x}	4	
	(d)	(ii)	X hunts around 7 V Y saturates $+/-13 \mathrm{~V}$ in time with X	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	any amplitude and period (not nec. constant)
3	(a)		5 address lines $2^{5}=32$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	
	(b)		$1111_{2}=15$	1	
	(c)		$\begin{aligned} & \mathrm{A}_{4}-\mathrm{A}_{0}=0 \mathrm{~V}, 0 \mathrm{~V}, 0 \mathrm{~V}, 5 \mathrm{~V}, 5 \mathrm{~V} \\ & \overline{\mathrm{CE}}=0 \mathrm{~V} \\ & \mathrm{Read}=0 \mathrm{~V} \\ & \overline{\text { Write }}=5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Accept 00011 for [1] Accept any combination of 5V and 0V for [1] Only penalise using " 1 " instead of " 5 V " once.

Question		Answer	Marks	Guidance
	(d)	Any 5 of the following: - \quad Start with ce, write and read all high - $\mathrm{A}_{4}-\mathrm{A}_{0}=00100$ - $\mathrm{D}_{3}-\mathrm{D}_{0}=0010$ EITHER - enable pulled low - write pulsed low - enable pulled high OR - write pulled low - enable pulsed low - write pulled high	5	order of address and data unimportant 1 mark for correct order (data and address set-up before writing /write+/ce=0)
	(e)	```2 memory modules data lines connected together four address lines connected together fifth used to direct CE CE directed correctly read and write connected together```	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Only 1 module [0] A_{5} used to select module in some way
4	(a)	Any 3 of the following: - collection of wires - connecting CPU to memory (and ports) - to select location in memory (or port) - to write to/read from - Unidirectional	3	
	(b)	Any 4 of the following: - in CPU - register/store - for address of instruction - next to be accessed - increments - reference to changing with jump/ret/reset	4	

Question		Answer	Marks	Guidance
6	(a)	set up mask (for door fully open sensor) get values from all input devices check if door fully open get inputs again if door not fully open (turn off door opener but leave) red LED on return to main program	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	
	(b)	Any 4 of the following: - turn on green LED - for 10 s - then turn yellow LED for 10 s - then turn red LED - explanation of left shift	4	
	(c)	switcha: MOVI Sn, 01 IN Sm, I AND Sn, Sm JZ switcha [loop back to IN statement or above] RET	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	n not the same as m
	(d)	wait10s: MOVI S0, 28 (set up counter) wait250ms: MOVI S1, FA back: RCALL wait1ms DEC S1 JNZ back DEC S0 JNZ wait250ms RET Use of nested loops At least 2 labels correct product of counters $=10000$ Whole subroutine works	1 1 1 1 1 1	Values must be less than 256
7	(a)	1 correct label rest of labels correct	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	

Questi	Answer	Marks	Guidance
(b)	two numbers from correct line e.g. 30mA, 1V $1 / 30 \times 10^{-3}=33 \Omega(30 \Omega-35 \Omega)$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	
(c)	$\begin{aligned} & \mathrm{R}_{\mathrm{DS}}=3 / 90=33 \Omega \\ & \mathrm{I}_{\mathrm{DS}}=0.8 /(47+33)=0.01 \mathrm{~A} \\ & \text { amplitude }=0.33 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	
(d)	for small voltages the MOSFET behaves as resistor as the V proportional to R for large voltages I does not depend on \vee	1 1	
(e)	Any 2 of the following: for small voltages the MOSFET behaves as resistor (as the V proportional to R) for large voltages I does not depend on V (does not behave like a resistor) at large input signal there is a constant voltage between input and output/output no longer proportional to input	2	Allow MOSFET saturates [1]
(f)	Any 4 of the following: - amplitude of sound signal out increases linearly - over a restricted range - until sound signal out reaches amplitude $=3 \mathrm{~V}$ - when MOSFET saturates - and sound signal in 7.2 V - then sound signal continues to rise non-linearly	4	Accept MOSFET stops being a resistor/becomes current sink

APPENDIX 1

Quality of Written Communication

The candidate expresses complex ideas extremely clearly and fluently. Sentences and paragraphs follow on from one another smoothly and logically. Arguments are consistently relevant and well structured. There will be few, if any, errors of grammar, punctuation and spelling.

2 The candidate expresses straightforward ideas clearly, if not always fluently. Sentences and paragraphs may not always be well connected. Arguments may sometimes stray from the point or be weakly presented. There may be some errors of grammar, punctuation and spelling, but not such as to suggest a weakness in these areas.

The candidate expresses simple ideas clearly, but may be imprecise and awkward in dealing with complex or subtle concepts. Arguments may be of doubtful relevance or obscurely presented. Errors in grammar, punctuation and spelling may be noticeable and intrusive, suggesting weaknesses in these areas.

0
The language has no rewardable features.

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

