GCE

Electronics

Advanced GCE

Unit F614: Control Systems

Mark Scheme for June 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2011
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

Question		Expected answer			Mark	Additional guidance
1	(a)					
		A	E	Q		
		0	0	High impedance		
		0	1	0	[1]	
		1	0	High impedance	[1]	
		1	1	1	[1]	
		all combinations of A and E			[1]	
	(b)	EITHER to allow more than one device to be connected to the databus OR to allow the databus to be bidirectional (owtte)			[1]	
	(c)	Read kept low make data high [or 1 or 5V] make write high [or 1 or 5 V] (turning on tri-state) (output of the tri-state) charges the capacitor to $\mathrm{Y}=5 \mathrm{~V}$ $Y=5 \mathrm{~V}$ so MOSFET on and Z pulled low. NOT gate inverts Z to make X high [max 3 marks]			[1] [1] [1] [1] [1]	Some points may be in answer (d)
	(d)	make read high [or 1 or 5V] to turn tri-state on so data goes high to be read capacitor holds charge Write kept high $\max 3$			[1] [1] [1]	Some points may be in answer (c)

Question		Expected answer	Mark	Additional guidance
3	(a)	Path showing flow of information from output back to oscillator (wtte)	[1]	
	(b)	The output of an open loop system does not change when the conditions change. Closed loop systems automatically adjust to keep the output at the desired level (owtte)	[1] [1]	
	(c)	correct rectifier correct polarity of output capacitor for smoothing on dc output	$\begin{aligned} & {[1]} \\ & {[1]} \\ & {[1]} \end{aligned}$	
	(d)	LED photo-transistor LED give out light when current/voltage present photo-x switches on/conducts when receives light	$\begin{aligned} & {[1]} \\ & {[1]} \\ & {[1]} \end{aligned}$	
	(e)	to prevent accidents/electrocution/damage if high voltage signals connect to low voltage output to allows comparator to control oscillator turn on/off oscillator when V to high/low no electrical connection (owtte) up to max 3 marks	$\begin{aligned} & {[1]} \\ & {[1]} \\ & {[1]} \end{aligned}$	

Question			Expected answer	Mark	Additional guidance
4	(a)		blue LED glows first two lines send 08H to output port makes output 00001000 so \mathbf{Q}_{3} high	$\begin{aligned} & \hline[1] \\ & {[1]} \\ & {[1]} \\ & \hline \end{aligned}$	
	(b)		dry: MOVI OUT $\mathrm{Sn}, 88$ RET Q, Sn (n is any integer between 0 and 7)	[2] [1] [1]	1 mark for MOVI Sn and 1 mark for 88
	(c)		MOVI S0, $8 \underline{0}$ JZ skip	[1] [2]	
	(d)		```turn off blue LED and heater\&motor toggle Isb store 100 decimal in S 7 ; do nothing for 1 ms take away 1 from S7; keep going back until S7=0 makes the yellow LED flashes continuously everything else off (implied)```	$\begin{aligned} & {[-1]} \\ & {[1]} \\ & {[1]} \\ & {[1]} \\ & {[1]} \\ & {[1]} \\ & {[1]} \\ & {[1]} \\ & {[1]} \end{aligned}$	turn everything off 2 marks
	(e)	(i)	code can be tested in small chunks code can easily be reused from other projects code can be used several times in the same program saving memory saves development time makes program easier to understand $\max 2$	$\begin{aligned} & {[1]} \\ & {[1]} \end{aligned}$	

Question		Expected answer	Mark	Additional guidance
	(ii)	program counter loaded with return address from top of stack stack pointer decremented/incremented return address stored on stack [max 3]	$\begin{aligned} & {[1]} \\ & {[1]} \\ & {[1]} \end{aligned}$	
(f)		resets program counter to 0/makes program go to line 0 lights blue LED and waits for hands to be sensed which stops the yellow LED flashing/cancels fault/everything else off	$\begin{aligned} & \hline[1] \\ & {[1]} \\ & {[1]} \end{aligned}$	

Question		Expected answer	Mark	Additional guidance
5	(a)	input connected to gate through capacitor output connected to drain through capacitor	$\begin{aligned} & \hline[1] \\ & {[1]} \\ & {[1]} \\ & {[1]} \end{aligned}$	
	(b)	$\begin{aligned} & I=\frac{V_{S}-V_{D}}{R}=\frac{15-3}{680 \times 10^{3}}=1.8 \times 10^{-5} \mathrm{~A} \\ & R=\frac{V}{I}=\frac{3}{1.8 \times 10^{-5}}=167000 \Omega \end{aligned}$ Correct calculation of pd across 680 k resistor Calculation of I dividing by 680k (ecf) Calculation of R by diving 3 by (ecf)	[1] [1] [1]	
	(c)	$\mathrm{I}=40 \mathrm{~mA}$ V across 180Ω resistor is $0.04 \times 180=7.2 \mathrm{~V}$ $V_{D}=15-7.2=7.8 \mathrm{~V}$	$\begin{aligned} & {[1]} \\ & {[1]} \\ & {[1]} \end{aligned}$	7.2V for 2 marks
	(d)	To allow V_{D} to wobble up and down (owtte) allows maximum (7 V) amplitude at output (owtte)	$\begin{aligned} & {[1]} \\ & {[1]} \end{aligned}$	Allow above half maintains pd across MOSFET for second mark.
	(e)	2.6 V	[1]	
	(f)	correct conversion of mA to A for $\Delta \mathrm{I}$ correct calculation of gradient of sloping graph $\mathrm{g}_{\mathrm{m}}=0.1 \mathrm{~S}$ Identification of 180Ω resistor Calculation of gain $=-g_{m} \times R=-0.1 \times 180=-18$	$\begin{aligned} & {[1]} \\ & {[1]} \end{aligned}$	1X10'S for 1 mark

Question		Expected answer		Mark	Additional guidance
	(g)	The new MOSFET has different characteristics Either		[1]	
		g_{m} is larger	threshold voltage is lower	$\begin{aligned} & \text { [1] } \\ & {[1]} \end{aligned}$	
	(h)	Drawing of MOSFET amplifier with resistor connected between gate and drain. Correctly drain biased MOSFET amplifier		[1] [1]	

Question		Expected answer	Mark	Additional guidance
6	(a)	8x2=16	[1]	
	(b)	number of addresses $2^{3}=8$ each bit needs its own wire to get data in and out	$\begin{aligned} & {[1]} \\ & {[1]} \end{aligned}$	
	(c)	each A from a module to a corresponding A on bus each control line to corresponding control bus line data lines from $1^{\text {st }}$ module to 2 different data-bus lines data lines from $2^{\text {nd }}$ module to 2 different data-bus lines from $1^{\text {st }}$ module	[1] [1] [1] [1]	
	(d)	read and write from each module to read and write bus $D_{1} \& D_{0}$ from each modules to data bus $A_{2}-A_{0}$ on each module to $A_{2}-A_{0}$ on bus CE on each module connected to some logic/demultiplexer fro $\mathrm{A}_{3} / \mathrm{CE}$ bus A_{3} correctly decoded to turn on one module when high one when low CE decoded to control access to combined modules	[1] [1] [1] [1] [1] [1]	

Quality of Written Communication

3 The candidate expresses complex ideas extremely clearly and fluently. Sentences and paragraphs follow on from one another smoothly and logically. Arguments are consistently relevant and well structured. There will be few, if any, errors of grammar, punctuation and spelling.

2 The candidate expresses straightforward ideas clearly, if not always fluently. Sentences and paragraphs may not always be well connected. Arguments may sometimes stray from the point or be weakly presented. There may be some errors of grammar, punctuation and spelling, but not such as to suggest a weakness in these areas.

1 The candidate expresses simple ideas clearly, but may be imprecise and awkward in dealing with complex or subtle concepts. Arguments may be of doubtful relevance or obscurely presented. Errors in grammar, punctuation and spelling may be noticeable and intrusive, suggesting weaknesses in these areas.
$0 \quad$ The language has no rewardable features.

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

