GCE

Electronics

Advanced Subsidiary GCE

Mark Scheme for June 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2011
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

Question		Grade	Expected answer					Mark	Additional Guidance
1	(a)								
			B	A	C	D	Q		
			0	0	1	0	0		
			0	1	1	0	0		
			1	0	0	0	1		
			1	1	0	1	0		
		E	Column C co					[1]	
		E	Coumn D cor					[1]	
		E	Column Q co	(ecf				[1]	
1	(b)	D	$\mathrm{Q}=\overline{\mathrm{A}} \cdot \mathrm{B}$ (ec					[1]	Do not accept answers in terms of C and D
1	(c)	E						[1]	
1	(d)	E						[1]	

Question (Grade

Question			Grade	Expected answer	Mark	Additional Guidance
2	(a)	(i)	$\begin{aligned} & \mathrm{E} \\ & \mathrm{E} \end{aligned}$	$2.2 \mathrm{k} \Omega$ and $4.7 \mathrm{k} \Omega$ resistors resistors in series	$\begin{aligned} & {[1]} \\ & {[1]} \end{aligned}$	
2	(a)	(ii)	A		[1]	
2	(b)		$\begin{aligned} & \mathrm{C} \\ & \mathrm{D} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{I}=\frac{15}{\left(2.2 \times 10^{3}+5 \times 10^{3}\right)}=2.08 \mathrm{~mA} \\ & \mathrm{~V}=2.08 \times 10^{-3} \times 5 \times 10^{3} \mathrm{ecf} \\ & =10.42 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline[1] \\ & {[1]} \\ & {[1]} \end{aligned}$	(Calculation of current by) dividing by sum of 2.2 k and 5k Multiply (current) by 5k (ecf) Correct answer full marks by any method
2	(c)		A	No current flow into or out of the inputs of an op-amp (wtte)	[1]	Op-amp has high input impedance/resistance
2	(d)		$\begin{aligned} & \mathrm{A} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & \mathrm{V}=15-4.5=10.5 \mathrm{~V} \\ & \mathrm{R}=10.5 / 0.03=350 \Omega \end{aligned}$	$\begin{aligned} & {[1]} \\ & {[1]} \end{aligned}$	1 mark for dividing a voltage by 30 mA correctly accept $340 \Omega-360 \Omega$
2	(e)		E		[1]	
2	(f)		$\begin{aligned} & \hline B \\ & D \end{aligned}$	The op-amp can only provide 10mA at its output (wtte) The MOSFET can conduct enough current for the LED (wtte)	$\begin{aligned} & {[1]} \\ & {[1]} \end{aligned}$	Must state that current from op-amp is small (<30mA) Any statement about higher current from MOSFET or using the term "buffer" or "driver"

Question		Grade	Expected answer	Mark	Additional Guidance
2	(g)	E		[1]	Must have correct symbol and both connections
2	(h)	$\begin{aligned} & \mathrm{E} \\ & \mathrm{D} \\ & \mathrm{C} \\ & \mathrm{~B} \end{aligned}$	no current through LED because MOSFET off C saturated negative voltage at $\mathrm{B}>\mathrm{A}$ when cold thermistor has high resistance voltage at B is large/high any of above to max of 4	[max 4]	Allow $\mathrm{C}=-13 \mathrm{~V}$
2	(i)	$\begin{aligned} & \mathrm{C} \\ & \mathrm{~A} \\ & \mathrm{~B} \end{aligned}$	the LED will come on (suddenly) as temp rises thermistor resistance falls and V_{B} falls as soon as $B<A$ (suddenly) $C=+13 \mathrm{~V}$ MOSFET conducting as $\mathrm{V}_{\mathrm{Gs}}>\mathrm{V}_{\text {th }}$ any of above to $\max 3$	[max 3]	Do not allow slowly/gradually LED comes on at particular temp Allow C goes high

Question			Grade	Expected Answer	Mark	Additional Guidance
3	(a)	(i)	$\begin{aligned} & E \\ & D \end{aligned}$	$22 \times 10^{3} \times 47 \times 10^{-6}=1.03 \mathrm{~s}$ correct unit conversions multiply R by C	$\begin{aligned} & {[1]} \\ & {[1]} \end{aligned}$	$7.3 \times 10^{\text {n }}$ for 1 mark
3	(a)	(ii)	C	$0.7 \tau=0.7 \mathrm{~s}$ (ecf)	[1]	
3	(b)		$\begin{aligned} & \mathrm{E} \\ & \mathrm{D} \\ & \mathrm{E} \\ & \mathrm{C} \end{aligned}$	 Sudden change at switch pressed 5V between switch pressed and switch released voltage steady Exponential (by eye) decay from switch released	[1] [1] [1] [1]	
3	(c)		$\begin{aligned} & \mathrm{E} \\ & \mathrm{E} \\ & \mathrm{~A} \end{aligned}$		[1] [1] [1]	
3	(d)		$\begin{aligned} & \mathrm{E} \\ & \mathrm{D} \\ & \mathrm{C} \\ & \mathrm{~B} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	1 mark for each point (max 6 marks): when switch pressed capacitor (instantly) charges to 5 V ($\mathrm{A}=5 \mathrm{~V}$ makes) Q go to 0 V 0 V at Q (makes 5 V across buzzer) so sound produced buzzer continues to sound whilst switch pressed when switch released C discharges (through R) when X reaches $2.5 \mathrm{~V} \mathrm{Q}=5 \mathrm{~V}$ buzzer sounds (for 0.7 s) after switch released	[6]	Do not allow slowly/gradually

Question		Grade	Expected Answer	Mark	Additional Guidance
4		E	$\mathrm{T}=\frac{1}{\mathrm{f}}=\frac{1}{440}=2.3 \times 10^{-3} \mathrm{~s}=2.3 \mathrm{~ms}$	[1]	
4	(b)	$\begin{aligned} & \mathrm{E} \\ & \mathrm{D} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{R} \geq 10 \mathrm{k} \Omega \\ & \mathrm{RC}=\frac{2.3 \times 10^{-3}}{0.5} \quad \text { (correct equations) } \\ & =4.6 \times 10^{-3} \mathrm{~s} \quad \text { e.g. } \mathrm{R}=10 \mathrm{k} \Omega \quad \mathrm{C}=4.5 \times 10^{-7} \mathrm{~F} \end{aligned}$	[1] [1] [1]	mark for large resistor value $R C=4.5 \times 10^{n}$ for 1 mark Allow calculation using $\mathrm{T}=2 \mathrm{~ms}$
4	(c)	E	connection of some symbol for CRO between A and 0 V	[1]	
4	(d)	$\begin{aligned} & E \\ & D \\ & C \end{aligned}$	 square wave 2.5 divisions high period 4 division	[1] [1] [1]	position of trace on screen unimportant

| Question | | Grade | Expected Answer | Mark | Additional Guidance | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{4}$ | (e) | | | | | |

Question			Grade	Expected Answer	Mark	Additional Guidance
5	(a)		E		[4]	
5	(b)		A	The flow of information	[1]	
5	(c)	(i)	E		[1]	Allow any clear identification of LDR
5	(c)	(ii)	$\begin{aligned} & \hline \mathrm{E} \\ & \mathrm{D} \\ & \hline \end{aligned}$	Resistance dependes on light intensity Resistance falls with increased light intensity	$\begin{aligned} & {[1]} \\ & {[1]} \\ & \hline \end{aligned}$	
5	(c)	(iii)	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{C} \\ & \mathrm{C} \\ & \hline \end{aligned}$	current 0 for negative V current 0 then rises sharply at about 0.7 V (by eye)	$\begin{aligned} & {[1]} \\ & {[1]} \\ & {[1]} \\ & \hline \end{aligned}$	Not more than 2 V for rise
5	(c)	(iv)	A A A	$\begin{aligned} & \mathrm{I}=\frac{5}{22 \times 10^{3}}=2.27 \times 10^{-4} \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{R}}=13-0.7-5=7.3 \mathrm{~V} \\ & \mathrm{R}=\frac{7.3}{2.27 \times 10^{-4}}=3.2 \times 10^{4} \Omega=32 \mathrm{k} \Omega \end{aligned}$	[1] [1] [1]	Beware of missing 0.7V (lose 1 mak for wrong V) ecf
5	(c)	(v)	D	Potentiometer	[1]	Not variable resistor
5	(c)	(vi)	$\begin{aligned} & \hline \mathrm{A} \\ & \mathrm{~B} \\ & \hline \end{aligned}$	allows the voltage at the inverting input to be altered to adjust the turn on/turn off (light level)	$\begin{aligned} & {[1]} \\ & {[1]} \\ & \hline \end{aligned}$	

Question			Grade	Expected Answer		Additional Guidance
6	(a)		C	$W=\bar{C} \cdot \bar{B} \cdot A+\bar{C} \cdot B \cdot A+C \cdot B \cdot \bar{A}+C \cdot B \cdot A$	[1]	
6	(b)	(i)	B B A A	$\mathrm{W}=\overline{(\mathrm{A} \cdot \overline{\mathrm{C}}) \cdot \overline{(\mathrm{B} \cdot \mathrm{C})} \text { from circuit }, ~}$ $\mathrm{W}=\overline{\mathrm{C}} \cdot \overline{\mathrm{B}} \cdot \mathrm{A}+\overline{\mathrm{C}} \cdot \mathrm{B} \cdot \mathrm{A}+\mathrm{C} \cdot \mathrm{B} \cdot \overline{\mathrm{A}}+\mathrm{C} \cdot \mathrm{B} \cdot \mathrm{A}$ $W=\bar{C} \cdot(B+\bar{B}) \cdot A+C \cdot B \cdot(A+\bar{A})$ factorizing $W=\bar{C} \cdot A+C \cdot B \quad[A+\bar{A}]$ $W=\overline{\overline{(\mathrm{A} \cdot \overline{\mathrm{C}})} \cdot \overline{(\mathrm{B} \cdot \mathrm{C})}} \quad$ D.M.T.	$\begin{aligned} & {[1]} \\ & {[1]} \\ & {[1]} \\ & {[1]} \end{aligned}$	1 mark for getting correct expression of diag 1 mark for any correct Boolean manipulation 1 mark for any other type of Boolean manipulation
6	(b)	(ii)	B	to improve clarity of circuit diagram (owtte)	[1]	Do not accept 'unnecessary’
6	(c)		$\begin{aligned} & \mathrm{B} \\ & \mathrm{~A} \end{aligned}$	\mathbf{Z} 1 0 1 0 0 1 0 0 first four lines correct second four lines correct	$\begin{aligned} & {[1]} \\ & {[1]} \end{aligned}$	

	on	Grade	Expected Answer	Mark	Additional Guidance
6	(d)	$\begin{aligned} & \mathrm{C} \\ & \mathrm{~B} \\ & \mathrm{E} \end{aligned}$	correct inversion of each line use of 2 input AND for A\&C and 3 input AND for others use of OR gate for Z	[1] [1] [1]	alternatively use two 2-input AND gates to make 3-input AND gate

Quality of Written Communication

3 The candidate expresses complex ideas extremely clearly and fluently. Sentences and paragraphs follow on from one another smoothly and logically. Arguments are consistently relevant and well structured. There will be few, if any, errors of grammar, punctuation and spelling.

2 The candidate expresses straightforward ideas clearly, if not always fluently. Sentences and paragraphs may not always be well connected. Arguments may sometimes stray from the point or be weakly presented. There may be some errors of grammar, punctuation and spelling, but not such as to suggest a weakness in these areas.

1 The candidate expresses simple ideas clearly, but may be imprecise and awkward in dealing with complex or subtle concepts. Arguments may be of doubtful relevance or obscurely presented. Errors in grammar, punctuation and spelling may be noticeable and intrusive, suggesting weaknesses in these areas.

0 The language has no rewardable features.

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

