GCE

Electronics

Advanced GCE F614

Control Systems

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2010
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

General advice to Assistant Examiners on the procedures to be used

YOU WILL BE REQUIRED TO UNDERTAKE PRACTICE AND STANDARDISATION SCRIPTS BEFORE STARTING TO MARK LIVE SCRIPTS, YOU WILL BE ADVISED OF THE AMOUNT OF SCRIPTS PRIOR TO THE MARKING PERIOD.

1 The schedule of dates for the marking of this paper is very important. It is vital that you meet these requirements. If you experience problems then you must contact your Team Leader (Supervisor) without delay.

2 An element of professional judgement is required in the marking of any written paper. Candidates often do not use the exact words which appear in the detailed sheets which follow. If you are in doubt about the validity of any answer then consult your Team Leader (Supervisor) by phone, the messaging system within SCORIS or e-mail.

3 Some questions may have a 'Level of Response' mark scheme. Any details about these will be in the rationale.

4 If an answer has been crossed out and no alternative answer has been written then mark the answer crossed out.

In addition to the award of 0 marks, there is a NR (No Response) option on SCORIS.

Award 0 marks

- if there is any attempt that earns no credit (including copying out the question or some crossed out working)

Award NR (No Response)

- if there is nothing written at all in the answer space

OR

- if there is any comment which does not in any way relate to the question being asked (eg 'can't do', 'don't know')
OR
- if there is any sort of mark which is not an attempt at the question (eg a dash, a question mark)

6 Abbreviations, annotations and conventions used in the detailed Mark Scheme. These vary from paper to paper, you will be advised in advance of the correct abbreviations, annotations and conventions to be used.

Highlighting is also available to highlight any particular points on the script.
7 The Comments box
The comments box will be used by your PE to explain their marking of the practice scripts for your information. Please refer to these comments when checking your practice scripts. You should only type in the comments box yourself when you have an additional object of the type described in Appendix B of the Handbook for Assistant Examiners and Subject Markers.
Please do not use the comments box for any other reason.
Any questions or comments you have for your team leader should be communicated by phone, SCORIS messaging system or e-mail.

8 Abbreviations, annotations and conventions that are used in this Mark Scheme vary from paper to paper. The following annotations are available for this paper.

(SO to add any others)

\checkmark and \times
BOD - Benefit of doubt
NBOD - No benefit of doubt
TV - Too Vague
Highlighting is also available to highlight any particular points on the script.

Question	Grade	Expected answer	Mark	Additional guidance
1 (a)	$\begin{aligned} & \mathrm{E} \\ & \mathrm{E} \\ & \mathrm{E} \\ & \mathrm{C} \end{aligned}$	6 blocks Use of Ds in parallel as inputs Use Qs in parallel as outputs Use clocks all connected together as clock	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Any block correct d-type not necessary
(b)	$\begin{aligned} & \mathrm{E} \\ & \mathrm{C} \end{aligned}$	correct sequence 10011 Leading zero to make six bits 010011	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	
(c)	$\begin{aligned} & \text { E } \\ & \text { D } \\ & \text { B } \end{aligned}$	011001 last two digits correct 011001 third digit correct $011 \underline{0} 01$ first three digit correct $\mathbf{0 1 1 0 0 1}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	
(d)	$\begin{aligned} & \text { B } \\ & \text { B } \\ & \text { A } \end{aligned}$	Correct conversion of 14 to binary 001110 Complement of binary 110001 ecf Addition of 1 to get answer 110010 ecf	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	
(e)	$\begin{aligned} & \mathrm{D} \\ & \mathrm{E} \\ & \mathrm{C} \\ & \mathrm{~A} \end{aligned}$	Explain that subtraction is same as addition of negative number 19-14=19+(-14) $19-14=010011+110010 \text { ecf }$ Correct answer 000101 Explanation leading zero indicates +ve OR 101 indicates 5	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	
2 (a)	$\begin{aligned} & \hline \mathrm{E} \\ & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{D} \\ & \mathrm{D} \\ & \mathrm{E} \\ & \mathrm{E} \end{aligned}$	CPU correct Data bus correct Address bus correct Input port Output port Memory Clock	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	(If address and data bus wrong way around 1 mark)

Question	Grade	Expected answer	Mark	Additional guidance
(b)	$\begin{aligned} & \mathrm{E} \\ & \mathrm{E} \\ & \mathrm{D} \end{aligned}$	Group of wires/connections Bi-directional Carrying information to/from CPU/all devices	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	
(c)	$\begin{aligned} & \mathrm{E} \\ & \mathrm{D} \\ & \mathrm{D} \end{aligned}$	Memory/store in CPU storing results of calculations/ for moving data/quick access	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	
(d)	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{E} \\ & \mathrm{~B} \end{aligned}$	```CPU fetches instruction from memory (pointed at by PC) Increment PC Execute instruction Sequence correct (Fetch, increment, execute)```	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	
3 (a) (i)	E	Rectifier, Bridge rectifier/Full-wave rectifier	1	
(ii)	$\begin{aligned} & \mathrm{E} \\ & \mathrm{E} \\ & \mathrm{D} \\ & \mathrm{C} \end{aligned}$	Output in phase with positive V_{A} and similar shape Output in antiphase with negative V_{A} and similar shape Amplitude between 7 V and 8 V Flat section between half cycles	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	
(iii)	E	Capacitor in parallel with V_{B}	1	
(iv)	$\begin{aligned} & \mathrm{D} \\ & \mathrm{D} \\ & \mathrm{C} \end{aligned}$	Amplitude same as 3aii Line all positive and non-zero decay from peak until next peak	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	

Question	Grade	Expected answer	Mark	Additional guidance
(b) (i)	E	Correct zener symbol Resistor in series with zener and junction connected to non-inverting input Zener between non-inverting input and 0 v Zener reverse biased	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	
(ii)	$\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{D} \\ & \mathrm{~B} \end{aligned}$	Correct V=7v Correct units conversion Correct answer 0.42W or 420 mW (ecf)	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	0.72W [2]
(iii)	AABB	Up to a max of 4 of the following: As battery voltage increases, current falls because - Inverting input tries to rise - So Vout goes down - \quad So V_{GS} falls - Making I_{D} go down (R_{DS} go up) - Keeping V constant	4	

Question	Grade	Expected answer	Mark	Additional guidance
4 (a)	$\begin{aligned} & \mathrm{E} \\ & \mathrm{E} \end{aligned}$	Voltmeter connected between two MOSFET terminals Connected between G and S	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	
(b)	E E	Correct use of any rule Correct substitution $\begin{aligned} & \mathrm{e.g.}=\frac{V}{R}=\frac{12}{(220+47)}=0.0454 \mathrm{~A}=45.4 \mathrm{~mA} \\ & V=I R=0.0454 \times 47 \times 10^{3}=2.11 \mathrm{~V} \end{aligned}$ Correct answer 2.11 v	1 1 1	Look for 12/a resistance value (units must be consistent) for 1 mark.
(c) (i)	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{D} \\ & \mathrm{D} \end{aligned}$	Pair of numbers from VGS=2V line (eg 3V, 60mA) Correct conversion from mA to A Correct answer (50)	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	
(ii)	$\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{~B} \end{aligned}$	Attempt to use voltage divider formula Use of resistance from 4ci in calculation (ecf) Correct answer 1V	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	

Question	Grade	Expected answer	Mark	Additional guidance
(iii)	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~A} \end{aligned}$	Vout will increase Because RDS gets larger as VGS gets smaller	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	
(iv)	$\begin{aligned} & A^{*} \\ & A^{*} \\ & A^{*} \end{aligned}$	Half V1 when V2 $=9 \mathrm{~V}$ Quarter V1 when V2=12V Vout in phase with V1 with step changes in V2 transistions	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	
5 (a)	$\begin{aligned} & \mathrm{E} \\ & \mathrm{C} \end{aligned}$	40 AND S4, S5 (or AND S5, S4)	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	

Question	Grade	Expected answer	Mark	Additional guidance
(b)	E A C C B C	Set S0 equal to 8 and S6 to 0 Set up loop counter/make 8 loops OR to clear S6 for outputting wtee Toggle/change the MSB (wtte) in S6 Output S6 to turn LED on/off Subtract 1 from S5 to count number of time delays (wtte) Jump back to count down if $S 5>0$ Return to the main program	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	
(c)	$\begin{aligned} & \hline \mathrm{A} \\ & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{~A} \\ & \mathrm{E} \end{aligned}$	wait250ms: MOVI Sn, FA lock: RCALL wait1ms (not including label) DEC Sn JNZ lock (including label placing) RET	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Any register apart from S0 or S1 Sn matches first line Not loop, switch
(d) (i)	E	01100101	1	
(i)	D	65 ecf	1	
6 (a)	E	(-)5V	1	
(b)	$\begin{aligned} & \mathrm{E} \\ & \mathrm{E} \\ & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	Any op-amp circuit Correct use of negative feedback to produce amplifier component values at least $1 \mathrm{k} \Omega$ Voltage gain $=2$ or -2	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	

| Question | Grade | Expected answer | Mark | Additional guidance |
| :---: | :---: | :--- | :--- | :--- | :--- |
| $\mathbf{7}$ (a) | \mathbf{E} | Contents lost when power is turned off (wtte) | $\mathbf{1}$ | |
| (b) | \mathbf{E} | Allows the Data line to be bidirectional OR
 Allows more than one memory cell to be connected
 to the same data line | $\mathbf{1}$ | |

Question	Grade	Expected answer	Mark	Additional guidance
(d)	\mathbf{E}	correct circuit for $X($ or $Y)=W \cdot Z$	1	1
correct circuit for $Y($ or $X)=W \cdot \bar{Z}$				
Correct truth table a demultiplexer (no ecf)	1			
		\mathbf{E}		

Quality of Written Communication

3 The candidate expresses complex ideas extremely clearly and fluently. Sentences and paragraphs follow on from one another smoothly and logically. Arguments are consistently relevant and well structured. There will be few, if any, errors of grammar, punctuation and spelling.

2 The candidate expresses straightforward ideas clearly, if not always fluently. Sentences and paragraphs may not always be well connected. Arguments may sometimes stray from the point or be weakly presented. There may be some errors of grammar, punctuation and spelling, but not such as to suggest a weakness in these areas.

1 The candidate expresses simple ideas clearly, but may be imprecise and awkward in dealing with complex or subtle concepts. Arguments may be of doubtful relevance or obscurely presented. Errors in grammar, punctuation and spelling may be noticeable and intrusive, suggesting weaknesses in these areas.
$0 \quad$ The language has no rewardable features.

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

