GCE

Electronics

Advanced GCE F611

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2010
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

Question	Grade	Expected answer	Mark	Additional guidance
1a	$\begin{aligned} & \hline \mathrm{E} \\ & \mathrm{E} \end{aligned}$	$P=I \times V=8 \times 12=96 W$ Units: Watts or W	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Correct numerical answer Correct units
1b	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{D} \end{aligned}$	NAND gates can only supply about 10 mA Driver amplifies current / switches large current	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	Accept answers indicating limited current from gates [1]
1ci	D	IRF630	1	
1cii	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{D} \end{aligned}$	Can switch 8A (wtte) Not too expensive (wtte)	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	
1di	$\begin{aligned} & \mathrm{C} \\ & \mathrm{E} \\ & \mathrm{D} \end{aligned}$	Correct n-MOSFET symbol with correct DS polarity Heater and MOSFET/transistor in series with power supply MOSFET gate connected to output of monostable	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \end{aligned}$	Symbol needs to be correct with arrow pointing in

Question	Grade	Expected answer	Mark	Additional guidance
1dii	$\begin{aligned} & \hline \mathrm{E} \\ & \mathrm{D} \end{aligned}$	Switch between input and 0v Switch and resistor in series across supply	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	
1diii	C	To make input high when switch not pressed (wtte)	1	Accept sentence with "pull up" Accept "input would float without resistor" wtte Accept sensible answer about function of switch/resistor circuit e.g. "to allow the user to trigger the monostable"
1e	$\begin{aligned} & \mathrm{E} \\ & \mathrm{D} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & t=0.7 R C \quad \text { (eor) } \\ & t=0.7 \times 180 \times 10^{3} \times 1000 \times 10^{-6} \quad \text { (correct conversion) } \\ & t=126 \mathrm{~s} \quad(\text { calculation accurate }) \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	ecf incorrect units conversion for one of R or C

Question	Grade	Expected answer				Mark
2ai	E	OR	Additional guidance			
2aii	E			1		

Question	Grade	Expected answer	Mark	Additional guidance
2c	C	$\mathrm{X}=\overline{(\mathrm{N} \cdot \mathrm{M}) \cdot(\mathrm{N}+\mathrm{M})}$	1	Valid expression from circuit
	A	$X=\overline{\overline{\overline{\overline{(\mathrm{N} \cdot \mathrm{M})}}+\overline{(\mathrm{N}+\mathrm{M})}}} \quad \text { (D.M.T.) }$	1	1 mark for each of lines 2,3 \& 4 to maximum of 2 marks
	A	$\begin{aligned} & X=(N \cdot M)+(\overline{N+M}) \quad(2 \times \text { double negative }) \\ & X=(N \cdot M)+\overline{\overline{\bar{N}} \cdot \bar{M}} \quad \text { (D.M.T. }) \\ & X=N \cdot M+\bar{N} \cdot \bar{M} \quad \text { (double negative) } \end{aligned}$	1	ACCEPT attempt at reverse argument
				Use of valid rule eg DMT, cancelled, Pair of inversions, reversal/inversion of brackets [1]

Question	Grade	Expected answer	Mark	Additional guidance
3a	$\begin{aligned} & \hline \mathrm{E} \\ & \mathrm{E} \\ & \mathrm{E} \\ & \mathrm{E} \\ & \mathrm{E} \end{aligned}$	Vout=13v Voltage across R is $13-4.2=8.8 \mathrm{~V}$ ecf $15-4.2=10.8 \mathrm{~V}$ $\begin{aligned} & I=15 \mathrm{~mA}=0.015 \mathrm{~A} \\ & \mathrm{R}=8.8 / 0.015 \\ & \mathrm{R}=590 \Omega \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Evidence of correct output voltage used Evidence of subtracting 4.2 v from output Correct converstion from milli Correct use of Ohm's law Correct answer (1) allow ecf at each stage 590Ω allow more sig figs [5] $720 \Omega \text { [4] }$ $4.2 / 0.015=280 \Omega[2]$
3b	$\begin{aligned} & \mathrm{E} \\ & \mathrm{E} \\ & \mathrm{E} \\ & \mathrm{E} \end{aligned}$	Analogue: any value (between minimum and maximum) Digital: one of only two values Analogue: voltage at B Digital: Voltage at output of comparator	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	Accept voltage from LDR. Not just LDR Accept voltage across LED. Not just LED
3ci	E	Ring around zener	1	
3 cii	D $\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	(sharp) rise from zero current in +ve quadrant (sharp) fall from zero current in-ve quadrant departs from 0 V axis at 0.7 V departs from 0 V axis at -3.6 V	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Max 2 if rises not sharp
3ciii	E	3.6 V	1	Do not accept -3.6V
3d	$\begin{aligned} & \mathrm{E} \\ & \mathrm{E} \end{aligned}$	Resistance falls with increasing light intensity Line curves to be asymptotic to axes	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	
3 e	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	Total resistance is $2.4 \mathrm{k}+6.8 \mathrm{k}=9.2 \mathrm{k}$ Current through LDR is $15 / 9.2 \mathrm{k}=0.0016 \mathrm{~A}$ Voltage across 2.4 k is $0.0016 \times 2.4 \mathrm{k}=3.9 \mathrm{~V}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	
3f	$\begin{aligned} & \hline B \\ & D \\ & C \end{aligned}$	LED reverse biased Output is -13V because voltage at inverting input $(B)>$ voltage at noninverting input (A)	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \end{aligned}$	Accept "saturated negative" comparison of voltages at op-amp inputs
3 g	$\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{~B} \\ & \mathrm{~B} \end{aligned}$	Voltage at inverting input (B) $=3.6 \mathrm{v}$ at 30 Lux Current through 2.4 k is $3.6 / 2.4 \mathrm{k}=0.0015 \mathrm{~A}$ Voltage across LDR is $15-3.6=11.4 \mathrm{v}$ Resistance of LDR is $11.4 / 0.0015=7600 \Omega$	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Any evidence of using 3.6 V in calculations ecf from 3cii Use of potential divider rule with $2.4 \mathrm{k} \Omega$ Accept $7.6 \mathrm{k} \Omega$ for 4 marks

Question	Grade	Expected answer				Mark	Additional guidance
4a	$\begin{aligned} & \mathrm{E} \\ & \mathrm{~B} \end{aligned}$	All possible combinations of Q, R and S P correct				$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Order unimportant
		Q	R	S	P		
		0	0	0	0		
		0	0	1	0		
		0	1	0	1		
		0	1	1	0		
		1	0	0	1		
		1	0	1	0		
		1	1	0	1		
		1	1	1	0		

Question	Grade	Expected answer	Mark	Additional guidance
4b	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & P=Q \cdot \bar{S}+\bar{Q} \cdot R \cdot \bar{S} \\ & P=(Q+\bar{Q} \cdot R) \cdot \bar{S} \\ & P=(\overline{\bar{Q} \cdot \bar{R}}) \cdot \bar{S} \\ & P=(Q+R) \cdot \bar{S} \quad P=Q \cdot \bar{S}+R \cdot \bar{S} \end{aligned}$ OR $\begin{aligned} & P=(Q+\bar{Q}) \cdot R \cdot \bar{S}+Q \cdot \bar{S} \\ & P=R \cdot \bar{S}+Q \cdot \bar{S} \end{aligned}$ OR $\begin{aligned} & \mathrm{P}=\mathrm{Q} \cdot \overline{\mathrm{~S}}+\overline{\mathrm{Q}} \cdot \mathrm{R} \cdot \overline{\mathrm{~S}} \\ & \mathrm{P}=(\mathrm{Q}+\overline{\mathrm{Q}} \cdot \mathrm{R}) \cdot \overline{\mathrm{S}} \\ & \mathrm{P}=(\mathrm{Q} \cdot(\mathrm{R}+\overline{\mathrm{R}})+\overline{\mathrm{Q}} \cdot \mathrm{R}) \cdot \mathrm{S} \\ & \mathrm{P}=(\overline{\mathrm{Q}} \cdot \mathrm{R}+\mathrm{Q} \cdot \mathrm{R}+\mathrm{Q} \cdot \mathrm{R}+\mathrm{Q} \cdot \overline{\mathrm{R}}) \cdot \overline{\mathrm{S}} \\ & \mathrm{P}=((\overline{\mathrm{Q}}+\mathrm{Q}) \cdot \mathrm{R}+\mathrm{Q} \cdot(\mathrm{R}+\overline{\mathrm{R})}) \cdot \overline{\mathrm{S}} \\ & \mathrm{P}=(\mathrm{Q}+\mathrm{R}) \cdot \overline{\mathrm{S}} \quad \mathrm{P}=\mathrm{Q} \cdot \overline{\mathrm{~S}}+\mathrm{R} \cdot \overline{\mathrm{~S}} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Any valid Boolean manipulation 1 mark + Any valid result with fewer terms than original 1 mark Allow reverse argument for answer

Question	Grade	Expected answer	Mark	Additional guidance
4c	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	Correct implementation of \bar{S} Correct implementation of OR function Correct circuit with labels P, Q, R, S OR	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	

Question	Grade	Expected answer	Mark	Additional guidance
5ci	$\begin{aligned} & \hline \mathrm{B} \\ & \mathrm{~B} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \hline \end{aligned}$	Positive spikes remain Negative spikes reduced (disappear) to amplitude of -0.7 V because of clamping diodes in NOT gate	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	ecf if signal in 5bi all in region 0 V to 5 V - no change [1] ecf if signal in 5 bi outside 0 V to 5 V - describe clamping with values and explanation to max of [4] if all points covered.
5cii	$\begin{aligned} & \mathrm{C} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	Lamp flashes with period of 800ms Off for about 15ms (0.7RC) In opposite state for about 785 ms	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Allow if period implied from on time + off time Allow 10ms - 20ms Allow 780ms - 790ms On and off periods reversed [2]

Quality of Written Communication

3 The candidate expresses complex ideas extremely clearly and fluently. Sentences and paragraphs follow on from one another smoothly and logically. Arguments are consistently relevant and well structured. There will be few, if any, errors of grammar, punctuation and spelling.

2 The candidate expresses straightforward ideas clearly, if not always fluently. Sentences and paragraphs may not always be well connected. Arguments may sometimes stray from the point or be weakly presented. There may be some errors of grammar, punctuation and spelling, but not such as to suggest a weakness in these areas.

1 The candidate expresses simple ideas clearly, but may be imprecise and awkward in dealing with complex or subtle concepts. Arguments may be of doubtful relevance or obscurely presented. Errors in grammar, punctuation and spelling may be noticeable and intrusive, suggesting weaknesses in these areas.
$0 \quad$ The language has no rewardable features.

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

