GCE
 AS and A Level

Electronics

AS exams 2009 onwards
A2 exams 2010 onwards

Unit 5: ELEC5
Communication Systems
Version 1.1

General Certificate of Education

Advanced Level Examination
version 0.2

ELECTRONICS

ELEC5

Unit 5 Communication Systems

SPECIMEN PAPER

For this paper you must have:

- a pencil and a ruler
- a calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Answer the questions in the space provided.
- Show the working of your calculations.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- A Data Sheet is provided on pages 3 and 4. Detach this perforated

For Examiner's Use			
Number	Mark	Number	Mark
1		5	
2		6	
3		7	
4			
Total (Column 1)			
Total (Column 2)			
TOTAL			
Examiner's Initials			

Information

- The maximum mark for this paper is 80 .
- The marks for the questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- Any correct electronics solution will gain credit.
- You are reminded of the need for good English and clear presentation in your answers.

Data Sheet

- A perforated Data Sheet is provided on pages 3 and 4 of this question paper.
- This sheet may be useful for answering some of the questions in the examination.
- Detach this perforated sheet at the start of the examination.

Data Sheet

Resistors Preferred values for resistors (E24) series:

$1.0,1.1,1.2,1.3,1.5,1.6,1.8,2.0,2.2,2.4,2.7,3.0,3.3,3.6,3.9,4.3$, $4.7,5.1,5.6,6.2,6.8,7.5,8.2,9.1$ ohms and multiples that are ten times greater

Resistor Printed Code This code consists of letters and numbers:
(BS 1852)
R means $\times 1$
K means $\times 1000$ (i.e. 10^{3})
M means $\times 1000000$ (i.e. 10^{6})
Position of the letter gives the decimal point
Tolerances are given by the letter at the end of the code,
$\mathrm{F}= \pm 1 \%, \mathrm{G}= \pm 2 \%, \mathrm{~J}= \pm 5 \%, \mathrm{~K}= \pm 10 \%, \mathrm{M}= \pm 20 \%$.
Resistor Colour Code

Number	Colour
0	Black
1	Brown
2	Red
3	Orange
4	Yellow
5	Green
6	Blue
7	Violet
8	Grey
9	White

Multiplier

Tolerance, gold $= \pm 5 \%$, silver $= \pm 10 \%$, no band $= \pm 20 \%$
Silicon diode $\quad V_{\mathrm{F}}=0.7 \mathrm{~V}$
Silicon transistor $V_{\mathrm{be}} \approx 0.7 \mathrm{~V}$ in the on state, $V_{\mathrm{ce}} \approx 0.2 \mathrm{~V}$ when saturated

Resistance $R_{T}=R_{1}+R_{2}+R_{3}$
$\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}$
Capacitance $\frac{1}{C}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}$
$C=C_{1}+C_{2}+C_{3} \quad$ parallel
Time constant $T=C R, T_{1 / 2}=0.69 C R$
ac theory $\quad I_{\mathrm{rms}}=\frac{I_{0}}{\sqrt{2}}$
$V_{\mathrm{rms}}=\frac{V_{0}}{\sqrt{2}}$
$X_{\mathrm{C}}=\frac{1}{2 \pi C C} \quad$ reactance
$X_{\mathrm{L}}=2 \pi f L$
reactance
$f=\frac{1}{T}$
$f_{0}=\frac{1}{2 \pi \sqrt{L C}}$
series
parallel
series

Operational amplifier	$G_{\mathrm{V}}=\frac{V_{\text {out }}}{V_{\text {in }}}$	voltage gain
	$G_{\mathrm{V}}=-\frac{R_{\mathrm{f}}}{R_{1}}$	inverting
	$G_{\mathrm{V}}=1+\frac{R_{\mathrm{f}}}{R_{1}}$	non-inverting
	$V_{\text {out }}=-R_{\mathrm{f}}\left(\frac{V_{1}}{R_{1}}+\frac{V_{2}}{R_{2}}+\frac{V_{3}}{R_{3}}\right)$	summing
	$V_{\text {out }}=\left(\mathrm{V}_{+}-\mathrm{V}_{-}\right) \frac{R_{\mathrm{f}}}{R_{1}}$	difference
555 Astable and Monstable	$T=1.1 R C$	monostable
	$\left.\begin{array}{l} t_{\mathrm{H}}=0.7\left(R_{\mathrm{A}}+R_{\mathrm{B}}\right) C \\ t_{\mathrm{L}}=0.7 R_{\mathrm{B}} C \end{array}\right]$	astable
	$f=\frac{1.44}{\left(R_{\mathrm{A}}+2 R_{\mathrm{B}}\right) \mathrm{C}}$	

Assembler language microcontroller instructions

Mnemonic	Operands	Description	Operation	Flags	Clock cycles
NOP	none	No operation	none	none	1
CALL	K	Call subroutine	$\begin{gathered} \text { stack }<=\text { PC } \\ \text { PC }<=\mathrm{K} \\ \hline \end{gathered}$	none	2
RET	none	Return from subroutine	PC $<=$ stack	none	2
$\begin{aligned} & \hline \text { INC } \\ & \text { DEC } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{R} \\ & \mathrm{R} \\ & \hline \end{aligned}$	Increments the contents of R Decrements the contents of R	$\begin{aligned} & (\mathrm{R})<=(\mathrm{R})+1 \\ & (\mathrm{R})<=(\mathrm{R})-1 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{Z} \\ & \mathrm{Z} \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$
ADDW ANDW SUBW ORW XORW	$\begin{aligned} & \mathrm{K} \\ & \mathrm{~K} \end{aligned}$	Add K to W AND K with W Subtract K from W OR K and W XOR K and W	$\begin{aligned} & \mathrm{W}<=\mathrm{W}+\mathrm{K} \\ & \mathrm{~W}<=\mathrm{W} \cdot \mathrm{~K} \\ & \mathrm{~W}<=\mathrm{W}-\mathrm{K} \\ & \mathrm{~W}<=\mathrm{W}+\mathrm{K} \\ & \mathrm{~W}<=\mathrm{W} \oplus \mathrm{~K} \end{aligned}$	$\begin{aligned} & \mathrm{Z}, \mathrm{C} \\ & \text { Z, C } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
JMP	K	Jump to K (GOTO)	PC $<=\mathrm{K}$	none	2
MOVWR MOVW MOVRW	$\begin{gathered} \mathrm{R} \\ \mathrm{~K}, \mathrm{~W} \\ \mathrm{R} \end{gathered}$	Move W to the contents of R Move K to W Move the contents of R to W	$\begin{gathered} \hline(\mathrm{R})<=\mathrm{W} \\ \mathrm{~W}<=\mathrm{K} \\ \mathrm{~W}<=(\mathrm{R}) \end{gathered}$	$\begin{aligned} & \hline \mathrm{Z} \\ & \mathrm{Z} \\ & \mathrm{Z} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$

Turn over for the first question

Answer all questions in the spaces provided.

1 (a) In the space below draw a block diagram in the space below of a generalised communication system using the following terms

carrier generator	demodulator	input transducer
modulator	output transducer	receiver
transmitter		

Explain the meaning of the following terms
1 (b) (i) communication

1 (b) (ii) bandwidth and capacity to carry information.
\qquad
\qquad

2

(4 marks)
The receiver picks up a signal at 98.1 MHz and the local oscillator produces an output at 87.4 MHz .
(b) (ii) Which one of the frequencies you have calculated in part (b)(i) will pass through the if amplifier and filter?
(b) (iii) Which other radio frequency will the receiver respond to?
\qquad
2
(b) (iv) What is the name of this response in part (b)(iii)?
(7 marks)

3 (a) How is the information signal amplitude and information signal frequency are encoded on to the carrier wave using amplitude modulation (AM)?

Information signal amplitude is encoded as \qquad
\qquad
Information signal frequency is encoded as \qquad
\qquad

3 (b) Describe how the information signal amplitude and information signal frequency are encoded on to the carrier wave using frequency modulation (FM).

Information signal amplitude is encoded as \qquad
\qquad
Information signal frequency is encoded as \qquad
(c) An AM transmitter uses a carrier frequency of 693 kHz which is modulated with an information signal of a single frequency of 512 Hz .
Draw a complete frequency spectrum diagram of the modulated carrier.
Label all the features of your diagram and state the frequencies of all the components of the modulated signal.

(6 marks)

3 (d) Give one example of a radio communication system that uses FM. Discuss what advantages using FM brings to the system.
\qquad
\qquad
\qquad

Turn over for the next question

4 PMR446 walkie-talkies are Personal Mobile Radios which operate at frequencies of about 446 MHz . They can be used without a licence in most parts of Europe. Regulations require that the maximum power is 500 mW and equipment must be handheld with a fixed antenna. The range can vary from a few hundred metres (in a city) to a few kilometres (flat countryside).

Eight adjacent FM channels are available, with frequencies as follows:

Channel	Frequency (MHz)
1	446.00625
2	446.01875
3	446.03125
4	446.04375
5	446.05625
6	446.06875
7	446.08125
8	446.09375

Two ways of allowing more than eight separate communications are used. In one (CTCSS), one of about 50 low-pitch audio tones, ranging from 67 to 254 Hz , is transmitted with the signal.
(a) Calculate the bandwidth allocated to each channel.

(b) The visible aerial on the equipment is 5 cm long. Comment on the likely efficiency of this aerial when compared to its wavelength and explain other factors which limit the range of communication between two walkie-talkies, and why the range may vary with location.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

4 (c) Explain why the transmission of an extra tone, as in the CTCSS system does not interfere with the speech signal.
\qquad
\qquad

4 (d) Draw a circuit diagram for a circuit which can amplify the tone by a factor of 10 while attenuating the speech signal. Identify the type of circuit you have chosen and state the name and value of the relevant parameter you have chosen so that it might achieve the desired result.
Calculate suitable values of circuit components and mark them on the circuit diagram.

Type of circuit. \qquad
Relevant parameter \qquad value \qquad

5 In a mobile phone system, audio frequencies above 4 kHz must be removed before sampling of the microphone signal can take place.

5 (a) Draw the circuit diagram of an active filter that would achieve this.

5 (b) In the active filter circuit, the input resistor is $10 \mathrm{k} \Omega$ and the capacitor is 2.2 nF . Show that the value of the feedback resistor required is approximately $18 \mathrm{k} \Omega$.
\qquad
\qquad
\qquad
\qquad

5 (c) Calculate the voltage gain of this circuit at a frequency well below the breakpoint frequency.
\qquad
\qquad

5 (d) What minimum sampling rate must be used for the filtered microphone signal? Explain why.

Sampling rate \qquad
Explanation \qquad
\qquad
\qquad
\qquad

5 (e) What factors affect the maximum number of mobile telephones which can be supported in one cell.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

6 (a) Draw and label a diagram of a cross-section through a step-index optical fibre.

6 (b) (i) By what processes do optical signals travel along curved sections of the optical fibre?

6 (b) (ii) What output transducer could be used to launch an optical signal into an optical fibre?
\qquad
(b) (iii) What input transducer could convert a high data rate pulsed optical signal into an electrical signal?
\qquad

What is the name given to the effect on an optical signal of
(c) (i) the signal losing power as it travels along the optical fibre,
(c) (ii) the signal pulses becoming spread out in time as they travel along,
\qquad
6
(c) (iii) the signal leaking out of the fibre at tight bends or couplings.

6
(d) Discuss the advantages and disadvantages of an optical fibre system, compared with a wired system.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

7 The function of a 2 to 1 data multiplexer is described by the following Boolean equation.

$$
\mathbf{Q}=\mathbf{S} . \mathbf{A}+\overline{\mathbf{S}} . \mathbf{B}
$$

7 (a) Using the Boolean equation or otherwise, draw a logic diagram using any gates that would give this function.

A -

\qquad
B ——
S -
(4 marks)
7 (b) State and explain the practical application of this system, describing the function of the input signal S.
\qquad
\qquad
\qquad

7 (c) The diagram below shows two signals A and B , and signal S . Complete the diagram to show the state of the output Q .

(3 marks)

END OF QUESTIONS

