

GCE AS and A Level

Electronics

AS exams 2009 onwards A2 exams 2010 onwards

Unit 5: ELEC5 Communication Systems

Version 1.1

Surname				Oth	er Names			
Centre Number					Candidate	Number		
Candidate Signature								

General Certificate of Education Advanced Level Examination version 0.2

ELECTRONICS Unit 5 Communication Systems

SPECIMEN PAPER

For this paper you must have:

- a pencil and a ruler
- a calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Answer the questions in the space provided.
- Show the working of your calculations.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- A *Data Sheet* is provided on pages 3 and 4. Detach this perforated sheet at the start of the examination.

Information

- The maximum mark for this paper is 80.
- The marks for the questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- Any correct electronics solution will gain credit.
- You are reminded of the need for good English and clear presentation in your answers.

For Examiner's Use					
Number	Number Mark Number				
1	1 5				
2		6			
3		7			
4					
Total (Column					
Total (Column 2)					
TOTAL					
Examiner's Initials					

ELEC5

Leave blank

Data Sheet

- A perforated *Data Sheet* is provided on pages 3 and 4 of this question paper.
- This sheet may be useful for answering some of the questions in the examination.
- Detach this perforated sheet at the start of the examination.

3

Data Sheet

Resistors	Preferred values for resistors (E24 1.0, 1.1, 1.2, 1.3, 1.5, 1.6, 1.8, 2.0 4.7, 5.1, 5.6, 6.2, 6.8, 7.5, 8.2, 9.1 times greater	4) series: 9, 2.2, 2.4, 2.7, 3.0, 3.3, 3.6, 3.9, 4.3, ohms and multiples that are ten
Resistor Printed Code	This code consists of letters and r	numbers:
(BS 1852)	K means × 1 K means × 1000 (i.e. 10^3) M means × 1 000 000 (i.e. 10^6) Position of the letter gives the dec Tolerances are given by the letter F = ± 1%, G = ± 2%, J = ± 5%, K	cimal point at the end of the code, $t = \pm 10\%$, M = $\pm 20\%$.
Resistor Colour Code	Number Colour	
	1 Brown	Tolerance
	2 Red	Value
	3 Orange 4 Yellow	
	5 Green	
	6 Blue 7 Violet	† Multiplier
	8 Grey	Multiplier
	9 White	
	Tolerance, gold = $\pm 5\%$, silver = \pm	$\pm 10\%$, no band = $\pm 20\%$
Silicon diode	$V_{\rm F} = 0.7 ~{\rm V}$	
Silicon transistor	$V_{\rm be} \approx 0.7 \rm V$ in the on state, $V_{\rm ce} \approx 0.2 \rm V$	0.2 V when saturated
Resistance	$R_T = R_1 + R_2 + R_3$	series
	$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$	parallel
Capacitance	$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}$	series
	$C = C_1 + C_2 + C_3$	parallel
Time constant	$T = CR, T_{\frac{1}{2}} = 0.69 CR$	
ac theory	$I_{\rm rms} = \frac{I_0}{\sqrt{2}}$	
	$V_{\rm rms} = -\frac{V_0}{\sqrt{2}}$	
	$X_{\rm C} = \frac{1}{2\pi fC}$	reactance
	$X_{\rm L} = 2\pi f L$	reactance fraguency pariod
	$f = \frac{1}{T}$	nequency, period
	$f_0 = \frac{1}{2\pi\sqrt{LC}}$	resonant frequency

Operational amplifier	$G_{\rm V} = \frac{V_{\rm out}}{V_{\rm in}}$	voltage gain
	$G_{\rm V} = -\frac{R_{\rm f}}{R_{\rm l}}$	inverting
	$G_{\rm V} = 1 + \frac{R_{\rm f}}{R_{\rm 1}}$	non-inverting
	$V_{\rm out} = -R_{\rm f} \left(\frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3} \right)$	summing
	$V_{\rm out} = (V_+ - V) \frac{R_{\rm f}}{R_1}$	difference
555 Astable and Monstable	T = 1.1 RC	monostable
	$t_{\rm H} = 0.7 \ (R_{\rm A} + R_{\rm B})C$ $t_{\rm L} = 0.7 \ R_{\rm B}C$	astable
	$f = \frac{1.44}{(R_{\rm A} + 2R_{\rm B})C}$	
Electromagnetic waves	$c = 3 \times 10^8 \text{ m s}^{-1}$	speed in vacuo

Assembler language microcontroller instructions

	0 0				
Mnemonic	Operands	Description	Operation	Flags	Clock cycles
NOP	none	No operation	none	none	1
CALL	К	Call subroutine	stack <=PC PC <=K	none	2
RET	none	Return from subroutine	PC <= stack	none	2
INC	R	Increments the contents of R	$(R) \le (R) + 1$	Z	1
DEC	R	Decrements the contents of R	$(R) \le (R) - 1$	Z	1
ADDW	K	Add K to W	$W \leq W + K$	Z, C	1
ANDW	K	AND K with W	$W \le W \bullet K$	Z, C	1
SUBW	K	Subtract K from W	$W \leq W - K$	Z, C	1
ORW	K	OR K and W	$W \le W + K$	Z, C	1
XORW	K	XOR K and W	$W \leq = W \oplus K$	Z, C	1
JMP	K	Jump to K (GOTO)	PC <= K	none	2
MOVWR	R	Move W to the contents of R	(R) <= W	Z	1
MOVW	K, W	Move K to W	W <= K	Z	1
MOVRW	R	Move the contents of R to W	W <= (R)	Z	1

ELEC5 SPECIMEN

bandwidth and capacity to carry information. 1 (b) (ii)

> (5 marks)

1

(b)

1

(a)

2	(a) A superhet radio receiver uses the following subsystems				
		aerial	af amplifier	demodulator	if amplifier and filter
		mixer	local oscillator	loudspeaker	rf amplifier.
		Label	the block diagram below to	show how these subsyst	tems are connected.
		•		→	
					(4 marks)
	The r 87.4 M	eceiver p MHz.	bicks up a signal at 98.1 MH	Iz and the local oscillato	r produces an output at
2	(b)	(i)	Calculate which two new	frequencies will be prese	ent at the mixer output.
2	(b)	(ii)	Which one of the frequence through the if amplifier an	cies you have calculated d filter?	in part (b)(i) will pass
2	(b)	(iii)	Which other radio frequen	ncy will the receiver resp	ond to?
2	(b)	(iv)	What is the name of this re	esponse in part (b)(iii)?	
					(7 marks)

3	(a)	How is the information signal amplitude and information signal frequency are encoded on to the carrier wave using amplitude modulation (AM)?						
		Information signal amplitude is encoded as						
		Information signal frequency is encoded as						
		(2 marks)						
3	(b)	Describe how the information signal amplitude and information signal frequency are encoded on to the carrier wave using frequency modulation (FM).						
		Information signal amplitude is encoded as						
		Information signal frequency is encoded as						
		(2 marks)						
3	(c)	An AM transmitter uses a carrier frequency of 693 kHz which is modulated with an information signal of a single frequency of 512 Hz. Draw a complete frequency spectrum diagram of the modulated carrier. Label all the features of your diagram and state the frequencies of all the components of the modulated signal.						
	amp	litude						
		690 695 frequency/kHz						
		(6 marks)						

3 (d) Give one example of a radio communication system that uses FM. Discuss what advantages using FM brings to the system.

.....

(2 marks)

12

Turn over for the next question

4 PMR446 walkie-talkies are Personal Mobile Radios which operate at frequencies of about 446 MHz. They can be used without a licence in most parts of Europe. Regulations require that the maximum power is 500 mW and equipment must be handheld with a fixed antenna. The range can vary from a few hundred metres (in a city) to a few kilometres (flat countryside).

Channel	Frequency (MHz)
1	446.00625
2	446.01875
3	446.03125
4	446.04375
5	446.05625
6	446.06875
7	446.08125
8	446.09375

Eight adjacent FM channels are available, with frequencies as follows:

Two ways of allowing more than eight separate communications are used. In one (CTCSS), one of about 50 low-pitch audio tones, ranging from 67 to 254 Hz, is transmitted with the signal.

4 (a) Calculate the bandwidth allocated to each channel.

.....

(1 mark)

4 (b) The visible aerial on the equipment is 5 cm long. Comment on the likely efficiency of this aerial when compared to its wavelength and explain other factors which limit the range of communication between two walkie-talkies, and why the range may vary with location.

4	(c)	Explain why the transmission of an extra tone, as in the CTCSS system does not interfere with the speech signal.
		(1 mark)
4	(d)	Draw a circuit diagram for a circuit which can amplify the tone by a factor of 10 while attenuating the speech signal. Identify the type of circuit you have chosen and state the name and value of the relevant parameter you have chosen so that it might achieve the desired result. Calculate suitable values of circuit components and mark them on the circuit diagram.
		Type of circuit
		Relevant parametervalue

(6 marks)

- 5 In a mobile phone system, audio frequencies above 4 kHz must be removed before sampling of the microphone signal can take place.
- 5 (a) Draw the circuit diagram of an active filter that would achieve this.

(2 marks)

5	(b)	In the active filter circuit, the input resistor is $10 k\Omega$ and the capacitor is $2.2 nF$. Show that the value of the feedback resistor required is approximately $18 k\Omega$.
		(2 marks)
5	(c)	Calculate the voltage gain of this circuit at a frequency well below the breakpoint frequency.
		(2 marks)

5	(d)	What minimum sampling rate must be used for the filtered microphone signal? Explain why.
		Sampling rate
		Explanation
		(3 marks)
5	(e)	What factors affect the maximum number of mobile telephones which can be supported in one cell.
		(3 marks)

Turn over for the next question

6	(a)	Draw	and label a diagram of a cross-section through a step-index optical fibre.
			(1 mark)
6	(b)	(i)	By what processes do optical signals travel along curved sections of the optical fibre?
6	(b)	(ii)	What output transducer could be used to launch an optical signal into an optical fibre?
6	(b)	(iii)	What input transducer could convert a high data rate pulsed optical signal into an electrical signal?
			(3 marks)
	What	t is the n	name given to the effect on an optical signal of
6	(c)	(i)	the signal losing power as it travels along the optical fibre,
6	(c)	(ii)	the signal pulses becoming spread out in time as they travel along,
6	(c)	(iii)	the signal leaking out of the fibre at tight bends or couplings.
			(3 marks)

6 (d) Discuss the advantages and disadvantages of an optical fibre system, compared with a wired system.

Turn over for the next question

7 The function of a 2 to 1 data multiplexer is described by the following Boolean equation. $Q = S.A + \overline{S}.B$ 7 Using the Boolean equation or otherwise, draw a logic diagram using any gates (a) that would give this function. A-- Q B-S -(4 marks) 7 (b) State and explain the practical application of this system, describing the function of the input signal S. (3 marks) The diagram below shows two signals A and B, and signal S. Complete the 7 (c) diagram to show the state of the output Q. A В S Q (3 marks) **END OF QUESTIONS**

Copyright 2007 AQA and its licensors. All rights reserved.