

GCE AS and A Level

Electronics

AS exams 2009 onwards A2 exams 2010 onwards

Unit 2: ELEC2 Further Electronics

Version 1.1

ELEC2 SPECIMEN	

Surname				Oth	er Names					
Centre Numb	ber		Candidate Number							
Candidate Signature										

General Certificate of Education Advanced Subsidiary Examination version 0.2

ELECTRONICS Unit 2 Further Electronics

SPECIMEN PAPER

For this paper you must have:

- a pencil and a ruler
- a calculator.

Time allowed: 1 hour

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Answer the questions in the space provided.
- Show the working of your calculations.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- A *Data Sheet* is provided on pages 3 and 4. Detach this perforated sheet at the start of the examination.

Information

- The maximum mark for this paper is 67.
- The marks for the questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- Any correct electronics solution will gain credit.
- You are reminded of the need for good English and clear presentation in your answers.

Leave blank

ELEC2

For Examiner's Use					
Number	Mark	Num	ber	Mark	
1		5			
2		6			
3		7			
4					
Total (Column 1)					
Total (Column 2)					
TOTAL					
Examiner's Initials					

Data Sheet

- A perforated *Data Sheet* is provided on pages 3 and 4 of this question paper.
- This sheet may be useful for answering some of the questions in the examination.
- Detach this perforated sheet at the start of the examination.

3

Data Sheet

Resistors	Preferred values for resistors (E24) series: 1.0, 1.1, 1.2, 1.3, 1.5, 1.6, 1.8, 2.0, 2.2, 2.4, 2.7, 3.0, 3.3, 3.6, 3.9, 4.3, 4.7, 5.1, 5.6, 6.2, 6.8, 7.5, 8.2, 9.1 ohms and multiples that are ten times greater						
Resistor Printed Code	This code consists of le	etters and numbers:					
(BS 1852)	R means × 1 K means × 1000 (i.e. 1 M means × 1 000 000 Position of the letter gi Tolerances are given b $F = \pm 1\%$, $G = \pm 2\%$, J	R means × 1 K means × 1000 (i.e. 10^3) M means × 1 000 000 (i.e. 10^6) Position of the letter gives the decimal point Tolerances are given by the letter at the end of the code, F = + 1% G = + 2% I = + 5% K = + 10% M = + 20%					
Resistor Colour Code	Number Co 0 BI 1 Br 2 F 3 Or 4 Ye 5 Gr 6 B 7 Vi 8 G 9 W	lour ack own ed ange llow – reen lue olet rey hite	Tolerance Value				
~~~~	Tolerance, gold = $\pm 5\%$	, silver = $\pm 10\%$ , no ban	$d = \pm 20\%$				
Silicon diode	$V_{\rm F} = 0.7 \mathrm{V}$		· · 1				
Silicon transistor Resistance	$V_{be} \approx 0.7$ V in the on si $R_T = R_1 + R_2 + R_3$	ate, $V_{ce} \approx 0.2$ V when satisfy series	aturated				
	$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$	parallel					
Capacitance	$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}$	series					
	$C = C_1 + C_2 + C_3$	parallel					
Time constant	$T = CR, T_{\frac{1}{2}} = 0.69 CR$						
ac theory	$I_{\rm rms} = \frac{I_0}{\sqrt{2}}$						
	$V_{\rm rms} = -\frac{V_0}{\sqrt{2}}$						
	$X_{\rm C} = \frac{1}{2\pi fC}$	reactance					
	$X_{\rm L} = 2\pi f L$	reactance	u suis d				
	$f = \frac{1}{T}$	trequency,	period				
	$f_0 = \frac{1}{2\pi\sqrt{LC}}$	resonant fr	equency				

Operational amplifier	$G_{\rm V} = \frac{V_{\rm out}}{V_{\rm in}}$	voltage gain
	$G_{\rm V} = -\frac{R_{\rm f}}{R_{\rm 1}}$	inverting
	$G_{\rm V} = 1 + \frac{R_{\rm f}}{R_{\rm 1}}$	non-inverting
	$V_{\rm out} = -R_{\rm f} \left( \frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3} \right)$	summing
	$V_{\rm out} = (V_+ - V) \frac{R_{\rm f}}{R_1}$	difference
555 Astable and Monstable	T = 1.1 RC	monostable
	$t_{\rm H} = 0.7 \ (R_{\rm A} + R_{\rm B})C$ $t_{\rm L} = 0.7 \ R_{\rm B}C$	astable
	$f = \frac{1.44}{(R_{\rm A} + 2R_{\rm B})C}$	astable frequency
Electromagnetic waves	$c = 3 \times 10^8 \text{ m s}^{-1}$	speed in vacuo

## Assembler language microcontroller instructions

	0 0				
Mnemonic	Operands	Description	Operation	Flags	Clock cycles
NOP	none	No operation	none	none	1
CALL	K	Call subroutine	stack <=PC PC <=K	none	2
RET	none	Return from subroutine	PC <= stack	none	2
INC	R	Increments the contents of R	$(R) \le (R) + 1$	Z	1
DEC	R	Decrements the contents of R	$(R) \le (R) - 1$	Z	1
ADDW	K	Add K to W	$W \le W + K$	Z, C	1
ANDW	K	AND K with W	$W \le W \bullet K$	Z, C	1
SUBW	K	Subtract K from W	$W \leq W - K$	Z, C	1
ORW	K	OR K and W	$W \leq W + K$	Z, C	1
XORW	K	XOR K and W	$W \leq = W \oplus K$	Z, C	1
JMP	K	Jump to K (GOTO)	$PC \leq K$	none	2
MOVWR	R	Move W to the contents of R	(R) <= W	Z	1
MOVW	K, W	Move K to W	$W \leq K$	Z	1
MOVRW	R	Move the contents of R to W	W <= (R)	Z	1

Answer all questions in the spaces provided.





2 An audio mixing desk contains a difference amplifier. The circuit diagram is shown below.

ELEC2 SPECIMEN

2 (c) A microphone gives two audio signal outputs with respect to 0V. Signal 2 is inverted compared to signal 1. The signals received at the far end of a long cable carrying the microphone signal are shown below.



Signal 1 is connected to input A of the difference amplifier and signal 2 is connected to input B.

Explain how this arrangement is able to significantly reduce the effect on the microphone signal of noise picked up by the long cable.

3 (a) An industrial process takes 12 hours. Complete the diagram below to show how the four D-type flip-flops can be connected to form a binary up counter which resets at 12.



(5 marks)

(b) The counter circuit above is required to turn on a heater during the first, second, third, tenth and last hour of the process.Complete the last line of the truth table below to show the output states of the flip-flops.

Hours	D	С	В	Α
first	0	0	0	0
second	0	0	0	1
third	0	0	1	0
	•	•	•	
•	•		•	
•	•	•	•	
•	•		•	
•	•		•	
tenth	1	0	1	0
last	1			1

(4 marks)

9

4 A student has a hi-fi system which has one input socket with which to connect other sound devices. She wants to be able to connect her computer, a portable MP3 player and a DVD player. To overcome this problem she builds the circuit shown below.



A diagram of a D-type flip-flop is shown below. 5



Describe the function of a D-type flip-flop. 5 (a) (2 marks) Four rising edge triggered D-type flip-flops are connected to form a shift register. Describe the function of a shift register. (b) . . . . .

. . . . . . . . (3 marks)

## 5 (c) The circuit diagram below shows a four bit pseudo-random number generator.



Outputs  $Q_C$  and  $Q_D$  are EX-ORed together, inverted and then the output is connected to the D input of the first flip-flop. The truth table for the circuit is shown below, complete the missing line.

Q _A	Q _B	Q _C	Q _D	D input of first flip-flop
0	0	0	0	1
1	0	0	0	1
1	1	0	0	1
1	1	1	0	0
1	0	1	1	1

(4 marks)

9

Turn over for next question

LEAVE MARGIN BLANK

6 A graph showing how the output voltage,  $V_{out}$ , of a NOT gate varies with its input voltage,  $V_{in}$ , is shown below.



- 6 (a) What range of input voltages makes the output of the NOT gate logic 1? (1 mark)
  - (b) The NOT gate is used in the circuit below to make an oscillator.



Calculate the time taken for the  $100 \,\text{nF}$  capacitor to charge through the  $10 k\Omega$  resistor to half of the supply voltage.

(2 marks)

LEAVE MARGIN BLANK

6	(c)	(i)	What is the function of the op-amp?
6	(c)	(ii)	Why is it needed in this application?
			(2 marks)

The output waveform is shown below.



LEAVE MARGIN BLANK

	inj 0 V	$\begin{array}{c} +12 V \\ +12 V \\ +12 V \\ -12 V 2.2M \Omega \\ -12 V 2.2M \Omega \\ 10 k\Omega \\ 0 V \end{array}$
		0-12 V
7	(a)	Assuming that the voltage gain of the source followers is 1, show that the maximum voltage gain of the circuit is 221.
		(2 marks)
7	(b)	Estimate the bandwidth of the amplifier if the voltage gain-bandwidth product of the op-amp is $10^6$ .
		(2 marks)

7 A student builds a guitar practice amplifier using the circuit diagram shown below.

13

	An e Whe Whe disto	electric guitar has a maximum output of 120 mV. on connected to the amplifier above the sound quality is disappointing. on the amplifier is used with headphones at very low volume, the sound is very ported.					
7	(c)	(i)	What is the name given to distortion at low volume for this type of amplifier?				
7	(c)	(ii)	How can this distortion can be reduced?				
			(3 marks)				
7	(d)	The s now : harsh By co of the	student modifies the amplifier to correct for this low volume distortion, but finds that as the volume control is turned towards maximum, the sound is and distorted. In and the maximum output from the guitar and the maximum voltage gain a mplifier, explain why this occurs.				
7	(e)	Estin ampl	(3 marks) nate the maximum undistorted output power that can be obtained from this ifier.				
			(3 marks)				

## **END OF QUESTIONS**

ELEC2 SPECIMEN



Copyright 2007 AQA and its licensors. All rights reserved.