GCE
 AS and A Level

Electronics

AS exams 2009 onwards
A2 exams 2010 onwards

Unit 2: ELEC2
Specimen mark scheme
Version 1.1

The specimen assessment materials are provided to give centres a reasonable idea of the general shape and character of the planned question papers and mark schemes in advance of the first operational exams.

For operational papers, mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. The mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk
Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

[^0]
Mark Scheme

1

2 (a) Differential voltage gain $=\mathbf{R}_{\mathbf{f}} / \mathbf{R}_{\mathbf{1}} \checkmark$ $\Rightarrow \mathrm{G}_{\mathrm{v}}=10^{6} / 10^{5}=10$ $\checkmark \checkmark$ (3 marks)
(b) $\quad \mathbf{V}_{\text {out }}=\left(\mathbf{V}_{+}-\mathbf{V}_{-}\right) \times \mathbf{R}_{\mathbf{f}} / \mathbf{R}_{\mathbf{1}}=-0.2 \times 10=-2 \mathrm{~V} \checkmark \checkmark$
(c) Signal 2 is subtracted from Signal 1 by the difference amplifier

The noise is common to both signals and so will be reduced (disappear)
The two microphone signals will also be subtracted but since signal 2 is the inverse of signal 1 , the output will be twice signal 1 (or 2)
(a) D connected to \mathbf{Q}

CK connected to previous \mathbf{Q}
All resets connected together
Output of AND gate connected to reset \checkmark
Output C to AND gate
Output D to AND gate
(max 5 marks)
(b)

Hours	\mathbf{D}	\mathbf{C}	\mathbf{B}	A
first	0	0	0	0
second	0	0	0	1
third	0	0	1	0
tenth	1	0	0	1
last	1	0	1	1

(minus 1 per error)

4
(a) summing amplifier, mixer etc \checkmark (l mark)
(b) (i) Voltage gain of 5
(ii) Increase feedback resistor by a factor of 5 to $500 \mathrm{k} \Omega$
(3 marks)
(c) (i) Additional resistor added

To inverting input
(ii) It needs four times the gain of the others calculation
\Rightarrow resistor value $=25 \mathrm{k} \Omega$
(5 marks)
(question total 9 marks)
(a) On each rising edge of the clock pulse

Q becomes equal to D
(2 marks)
(b) On each rising edge of the clock pulse

The logic state of each flip-flop is moved to the next flip-flop along
The logic state of D of the first flip-flop is transferred to Q of the first flip-flop
(3 marks)
(c)

$\mathbf{Q}_{\mathbf{A}}$	$\mathbf{Q}_{\mathbf{B}}$	$\mathbf{Q}_{\mathbf{C}}$	$\mathbf{Q}_{\mathbf{D}}$	\mathbf{D} input of first flip-flop
0	0	0	0	1
1	0	0	0	1
1	1	0	0	1
1	1	1	0	0
0	1	1	1	1
1	0	1	1	1
$\checkmark \checkmark \checkmark$				

(4 marks)
(question total 9 marks)
(a) 0 to $1 / 2 \mathrm{~V}_{\mathrm{s}}$
(b) $\quad \mathbf{T}=\mathbf{0 . 6 9} \times \mathbf{R} \times \mathbf{C}=0.69 \times 10^{4} \times 10^{-7}=0.69 \mathrm{~ms} \checkmark \checkmark$
(c) (i) Voltage follower, buffer etc
(ii) To prevent the output circuit altering the charging rate of the capacitor
(d) (i) The NOT gate switches at half of the supply voltage
0.7 ms is the time taken for the capacitor to charge to this value
(ii) The curve shows the way in which the capacitor voltage changes with time (or exponential charge curve)
The vertical line is when the MOSFET rapidly discharges the capacitor
(a) Non-inverting amplifier

$$
\mathbf{G}_{\mathbf{v}}=\mathbf{1}+\mathbf{R}_{\mathbf{f}} / \mathbf{R}_{\mathbf{1}}=1+2200 / 10=221
$$

(b) $10^{6}=221 \times \mathrm{f} \checkmark$
$\Rightarrow \mathrm{f}=10^{6} / 221=4.525 \mathrm{kHz}$
(2 marks)
(c) (i) Cross over distortion
(ii) Apply a bias voltage to each MOSFET

So that each MOSFET is just conducting \checkmark There is a quiescent current
Use voltage divider. diodes etc to produce the bias voltage etc
(d) Output voltage trying to exceed the supply voltage

Output clipped to the supply voltage
Gain of amplifier set too high
etc
(3 marks)
(e) $\quad \mathbf{P}=\mathbf{V}_{\mathbf{s}}{ }^{2} /(\mathbf{2} \times \mathbf{R})=12^{2} /(2 \times 8)=144 / 16=9 \mathrm{~W}$
(3 marks)
(question total 13 marks)

Paper $=67$

[^0]: Set and published by the Assessment and Qualifications Alliance.

