

GCE AS and A Level

Electronics

AS exams 2009 onwards A2 exams 2010 onwards

Unit 1: ELEC1 Introductory Electronics

Version 1.1

Surname			Oth	er Names			
Centre Numb	er			Candidate	Number		
Candidate Sig	gnature						

General Certificate of Education Advanced Subsidiary Examination version 0.2

ELECTRONICS Unit 1 Introductory Electronics

SPECIMEN PAPER

For this paper you must have:

- a pencil and a ruler
- a calculator.

Time allowed: 1 hour

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Answer the questions in the space provided.
- Show the working of your calculations.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- A *Data Sheet* is provided on pages 3 and 4. Detach this perforated sheet at the start of the examination.

Information

- The maximum mark for this paper is 67.
- The marks for the questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- Any correct electronics solution will gain credit.
- You are reminded of the need for good English and clear presentation in your answers.

	For Exam	iner's l	Jse	
Number	Mark	Num	ber	Mark
1		5		
2		6		
3				
4				
Total (Column	1)	<u>.</u>		
Total (Column	2)	•		
TOTAL		•		
Examine	r's Initials			

ELEC1

Leave blank

Data Sheet

- A perforated *Data Sheet* is provided on pages 3 and 4 of this question paper.
- This sheet may be useful for answering some of the questions in the examination.
- Detach this perforated sheet at the start of the examination.

3

Data Sheet

Resistors	Preferred values for resistors (E 1.0, 1.1, 1.2, 1.3, 1.5, 1.6, 1.8, 2 4.7, 5.1, 5.6, 6.2, 6.8, 7.5, 8.2, 9 times greater	224) series: 2.0, 2.2, 2.4, 2.7, 3.0, 3.3, 3.6, 3.9, 4.3, 0.1 ohms and multiples that are ten
Resistor Printed Code	This code consists of letters and	l numbers:
(BS 1852)	K means × 1 K means × 1000 (i.e. 10^3) M means × 1 000 000 (i.e. 10^6) Position of the letter gives the d Tolerances are given by the lett F = ± 1%, G = ± 2%, J = ± 5%,	decimal point er at the end of the code, $K = \pm 10\%$, $M = \pm 20\%$.
Resistor Colour Code	Number Colour 0 Black 1 Brown	Tolerance
	2 Red 3 Orange	Value
	4 Yellow	
	6 Blue	<u> </u>
	7 Violet 8 Grey	Multiplier
	9 White	
	Tolerance, gold = $\pm 5\%$, silver =	$=\pm 10\%$, no band $=\pm 20\%$
Silicon diode	$V_{\rm F} = 0.7 {\rm V}$	
Silicon transistor Resistance	$V_{be} \approx 0.7 \text{ V}$ in the on state, $V_{ce} \approx R_{m} = R_{c} + R_{a} + R_{a}$	≈ 0.2 V when saturated
ixesistance	$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$	parallel
Capacitance	$\frac{1}{C} = \frac{1}{C} + \frac{1}{C} + \frac{1}{C}$	series
	C = C + C + C	norallal
Time constant	$C = C_1 + C_2 + C_3$ $T = CR T_1 = 0.69 CR$	paraner
ac theory	$I_{\rm rms} = \frac{I_0}{\sqrt{2}}$	
	$V_{\rm rms} = -\frac{V_0}{\sqrt{2}}$	
	$X_{\rm C} = \frac{1}{2\pi fC}$	reactance
	$X_{\rm L} = 2\pi f L$	reactance
	$f = \frac{1}{T}$	trequency, period
	$f_0 = \frac{1}{2\pi\sqrt{LC}}$	resonant frequency

Operational amplifier	$G_{\rm V} = \frac{V_{\rm out}}{V_{\rm in}}$	voltage gain
	$G_{\rm V} = -\frac{R_{\rm f}}{R_{\rm l}}$	inverting
	$G_{\rm V} = 1 + \frac{R_{\rm f}}{R_{\rm 1}}$	non-inverting
	$V_{\rm out} = -R_{\rm f} \left(\frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3} \right)$	summing
	$V_{\rm out} = (V_+ - V) \frac{R_{\rm f}}{R_{\rm l}}$	difference
555 Astable and Monstable	T = 1.1 RC	monostable
	$t_{\rm H} = 0.7 \ (R_{\rm A} + R_{\rm B})C$ $t_{\rm L} = 0.7 \ R_{\rm B}C$	astable
	$f = \frac{1.44}{(R_{\rm A} + 2R_{\rm B})C}$	astable frequency
Electromagnetic waves	$c = 3 \times 10^8 \text{ m s}^{-1}$	speed in vacuo

Assembler language microcontroller instructions

Mnemonic	Operands	Description	Operation	Flags	Clock cycles
NOP	none	No operation	none	none	1
CALL	К	Call subroutine	stack <=PC PC <=K	none	2
RET	none	Return from subroutine	PC <= stack	none	2
INC	R	Increments the contents of R	$(R) \le (R) + 1$	Z	1
DEC	R	Decrements the contents of R	$(R) \le (R) - 1$	Z	1
ADDW	K	Add K to W	$W \le W + K$	Z, C	1
ANDW	K	AND K with W	$W \le W \bullet K$	Z, C	1
SUBW	K	Subtract K from W	$W \leq W - K$	Z, C	1
ORW	K	OR K and W	$W \leq W + K$	Z, C	1
XORW	K	XOR K and W	$W \leq = W \oplus K$	Z, C	1
JMP	K	Jump to K (GOTO)	$PC \leq K$	none	2
MOVWR	R	Move W to the contents of R	$(R) \leq W$	Z	1
MOVW	K, W	Move K to W	W <= K	Z	1
MOVRW	R	Move the contents of R to W	$W \leq (R)$	Z	1

LEAVE MARGIN BLANK

			Answer all questions in the spaces provided.
1	A log	gic circu	it is shown below.
		A B	X =
		С	Y =
1	(a)	On th X and	the diagram above, write the Boolean expressions for the logic signals at points d Y in the spaces provided. (3 marks)
1	(b)	(i)	Write the Boolean expression for Q in terms of X and Y only.
			Q =
1	(b)	(ii)	Write the simplest Boolean expression for Q in terms of A , B and C .
			Q =
			(3 marks)

Α	В	С	X	Y	Q
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

1 (c) Complete the truth table to show the logic values of **X**, **Y** and **Q** for all the combinations of variables **A**, **B** and **C**.

(4 marks)

1 (d) Which single logic gate has the same function as the whole circuit on **page 6**?

(2 marks)

12

Turn over for the next question

Turn over ▶

- 2 A student designs an electronic system to sound a warning when rain starts to fall.
- 2 (a) Choosing appropriate input, process, and output subsystems from the list below. Draw a system diagram to show a possible design including any other component or subsystem required.

Choose from: comparator, driver, humidity sensor, audible warning device (awd).

(5 marks)

In which subsystem could 2 (b) (i) an op-amp be used, 2 (b) (ii) a siren be used, 2 a MOSFET be used? (b) (iii) (3 marks) The whole system operates from a 12V power supply and draws a current of 15 mA when the awd is off. The current increases to 265 mA when the awd is on. Calculate 2 (c) (i) the awd current, 2 (c) (ii) the dc input power to the awd. (4 marks)

- 3 The diagram below shows an electronic system that has an output voltage of 5 V. An LED and its series resistor are to be connected to the output of this system so that the LED lights when the output is 5 V.
- 3 (a) Complete the diagram below to show how the LED and resistor are connected.

(a)	(i)	Draw a circuit connected to the	diagram in the space ne MOSFET. Label	e below to show h the leads of the M	ow the solenoid is IOSFET.
				0	+12V
				0	0V
(a)	(ii)	Draw on your MOSFET fron	circuit diagram the c n the back emf gener	omponent require ated by the solence	ed to protect the bid.
					(7 mark
(b)	Con typ MC	mplete the table be ical values of gate OSFET.	low to describe the s voltage and current t	witching operatio hat will apply to e	(7 mark) n of the MOSFET usin each state of the
(b)	Con typ MC	mplete the table be ical values of gate OSFET.	low to describe the s voltage and current t MOSFET off	witching operatio hat will apply to e MOSFET on	(7 mark) n of the MOSFET usin each state of the
(b)	Con typ MC	mplete the table be ical values of gate OSFET. Gate voltage	low to describe the s voltage and current t MOSFET off	witching operatio hat will apply to e MOSFET on	(7 mark
(b)	Con typ MC	mplete the table being ical values of gate voltage Gate current	low to describe the s voltage and current t MOSFET off	witching operatio hat will apply to e MOSFET on	(7 mark

(5 marks)

12

5 A light sensor subsystem connected to part of a comparator circuit is shown below.

Give the output voltage from the op-amp at

 5
 (c)
 (i)
 100 lux,

 5
 (c)
 (ii)
 5 lux.

(2 marks)

8

6 A student develops the logic circuit shown below.

6 (a) Convert this system into one using only NAND gates by replacing each of the gates shown above with its NAND gate equivalent.

(5 marks)

- 6 (b) Draw a ring round the pairs of redundant gates on the diagram in part (a). (2 marks)
- 6 (c) Draw the simplest logic circuit using only NAND gates that has the same function as the original.

(2 marks)

END OF QUESTIONS

Copyright 2007 AQA and its licensors. All rights reserved.