AQA
 General Certificate of Education AS/A-level

Electronics

Data Sheet

Operational amplifier

$$
\begin{array}{ll}
G_{\mathrm{V}}=\frac{V_{\text {out }}}{V_{\text {in }}} & \text { voltage gain } \\
G_{\mathrm{V}}=-\frac{R_{\mathrm{f}}}{R_{1}} & \text { inverting } \\
G_{\mathrm{V}}=1+\frac{R_{\mathrm{f}}}{R_{1}} & \text { non-inverting } \\
V_{\text {out }}=-R_{\mathrm{f}}\left(\frac{V_{1}}{R_{1}}+\frac{V_{2}}{R_{2}}+\frac{V_{3}}{R_{3}}\right) & \text { summing } \\
V_{\text {out }}=\left(\mathrm{V}_{+}-\mathrm{V}_{-}\right) \frac{R_{\mathrm{f}}}{R_{1}} & \text { difference } \\
T=1.1 R C & \text { monostable } \\
t_{\mathrm{H}}=0.7\left(R_{\mathrm{A}}+R_{\mathrm{B}}\right) C \\
t_{\mathrm{L}}=0.7 R_{\mathrm{B}} C & \text { astable } \\
f=\frac{1.44}{\left(R_{\mathrm{A}}+2 R_{\mathrm{B}}\right) C} & \text { astable frequency }
\end{array}
$$

555 Astable and Monostable $\quad T=1.1 R C$

Electromagnetic waves $c=3 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \quad$ speed in vacuo

Assembler language microcontroller instructions

Mnemonic	Operands	Description	Operation	Flags	Clock cycles
NOP	none	No operation	none	none	1
CALL	K	Call subrountine	$\begin{gathered} \text { stack }<=\mathrm{PC}+1 \\ \mathrm{PC}<=\mathrm{K} \\ \hline \end{gathered}$	none	2
RET	none	Return from subrountine	PC <=stack	none	2
INC	R	Increments the contents of R	(R) < $=(\mathrm{R})+1$	Z	1
DEC	R	Decrements the contents of R	$(\mathrm{R})<=(\mathrm{R})-1$	Z	1
ADDW	K	Add K to W	W <= W + K	Z, C	1
ANDW	K	AND K with W	$\mathrm{W}<=\mathrm{W} \cdot \mathrm{K}$	Z, C	1
SUBW	K	Subtract K from W	$\mathrm{W}<=\mathrm{W}-\mathrm{K}$	Z, C	1
ORW	K	OR K and W	$\mathrm{W}<=\mathrm{W}+\mathrm{K}$	Z, C	1
XORW	K	XOR K and W	$\mathrm{W}<=\mathrm{W} \oplus \mathrm{K}$	Z, C	1
JMP	K	Jump to K (GOTO)	PC $<=$ K	none	2
JPZ	K	Jump to K on zero	$\mathrm{PC}<=\mathrm{K}$ if $\mathrm{Z}=1$	$\mathrm{Z}=1$	2
JPC	K	Jump to K on carry	$\mathrm{PC}<=\mathrm{K}$ if $\mathrm{C}=1$	$\mathrm{C}=1$	2
MOVWR	R	Move W to the contents of R	(R) $<=$ W	Z	1
MOVW	K	Move K to W	W $<=$ K	Z	1
MOVRW	R	Move the contents of R to W	W <= (R)	Z	1

