AQA

Please write clearly in block capitals.

Centre number \square
\square

Surname
Forename(s)
Candidate signature \qquad

A-level

ELECTRONICS

Unit 4 Programmable Control Systems

Tuesday 14 June 2016 Morning
 Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

- a pencil and a ruler
- a calculator
- Data Sheet (enclosed).

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for each question are shown in brackets.
- The maximum mark for this paper is 80 .

Answer all questions in the spaces provided.

Many different subsystems and processes are present in microprocessor control systems or in microcontrollers.

Table 1 contains the names of 18 subsystems and processes.
Table 1

ADC	data latch	power supply
address bus	flag	program counter
ALU	interrupt	ROM
clock	PIC	stack
DAC	polling	tri-state buffer
data bus	port	watch dog timer

Table 2 contains 11 descriptions of subsystems and processes.
Write the correct name of each description in Table 2 from the names given in Table 1. Each name may be used once, more than once or not at all. The first line has been completed for you.

Table 2

Description	Name
Interfaces a microprocessor to an analogue system.	DAC
This keeps all subsystems within a microcontroller system synchronised.	
All arithmetic and logic operations are carried out in this subsystem.	
A bi-directional bus within a microprocessor.	
A temporary store for data after being sent to an output port.	
Interfaces an analogue input signal to a microprocessor.	
Isolates an input port from a microprocessor when it is not being read.	
A process that monitors the state of an input port.	
An area of memory used by a microprocessor as temporary storage for its internal processes.	
A process by which an external system can request assistance from a microcontroller.	
The location of the control program in a microcontroller.	

2 The system diagram for an automatic window blind is shown in Figure 1.

Figure 1

An analogue light sensor monitors the light level outside. When it is dark, the motor drives the blind down until it reaches the blind-down sensor. When it is light, the motor drives the blind up until it reaches the blind-up sensor.

2 (a) (i) State why an analogue sensor cannot be connected directly to a digital input on the microcontroller.
\qquad
\qquad

2 (a) (ii) Explain why the Schmitt trigger is used in this application rather than a comparator.
[2 marks]
\qquad
\qquad

2 (b) The circuit diagram of the Schmitt trigger is shown in Figure 2.
Figure 2

2 (b) (i) Explain the function of the resistor, R, and the Zener diode.
\qquad
\qquad
\qquad

2 (b) (ii) Show that the upper switching level of the Schmitt trigger is approximately 8.4 V .
\qquad
\qquad
\qquad
\qquad

2 (b) (iii) Calculate the lower switching level of the Schmitt trigger.
\qquad
\qquad
\qquad

3 You do not need to have attempted Question 2 before attempting this question.
The system diagram for an automatic window blind is shown in Figure 3.

Figure 3

An analogue light sensor monitors the light level outside.
When it is dark, the motor drives the blind down until it reaches the blind-down sensor.
When it is light, the motor drives the blind up until it reaches the blind-up sensor.

3 (a) The sensors and driver are connected to PORTB of the microcontroller.
State the assembly instructions needed to set bits D_{0} to D_{3} of PORTB as inputs and D_{4} to D_{7} as outputs.
\qquad
\qquad
\qquad

Question 3 continues on the next page

3 (b) The blind-up sensor is connected to D_{0} of PORTB.
The sensor only gives a logic 1 when the blind is up.
The blind-down sensor is connected to D_{1} of PORTB.
The sensor only gives a logic 1 when the blind is down.
The Schmitt trigger is connected to D_{2} of PORTB and gives a logic 1 output when it is light and logic 0 when it is dark.

Complete the flow chart in Figure 4 to show how the input states are monitored and how the subroutines motor down and motor up are called as needed.

Figure 4

3 (c) Table 3 shows how the motor driver is controlled by bits D_{6} and D_{7} of PORTB.

Table 3

\mathbf{D}_{7}	$\mathbf{D}_{\mathbf{6}}$	Motor state
0	0	off
0	1	motor moves blind down
1	0	motor moves blind up
1	1	off

3 (c) (i) Circle the number that must be written to PORTB to move the blind down.
0x04
0x08
0x40
0x80

3 (c) (ii) Circle the number that must be written to PORTB to move the blind up.

3 (d) When called, the motor down subroutine:

- sets PORTB for the motor to lower the blind
- polls the state of the blind-down sensor until it is at logic 1
- sets PORTB to turn the motor off
- returns.

Write the assembler code needed to poll the state of the blind-down sensor until it is at logic 1.
\qquad
\qquad
\qquad
\qquad

4 A gardener wants to remotely monitor the temperature in his greenhouse from inside his home.
He decides to use a thermistor as the temperature sensor.
The characteristic of the thermistor is shown in Figure 5.
Figure 5

4 (a) Select from the following values the resistance of the thermistor at $0^{\circ} \mathrm{C}$. Circle your answer.
$10.8 \mathrm{k} \Omega \quad 14 \mathrm{k} \Omega \quad 18 \mathrm{k} \Omega \quad 22 \mathrm{k} \Omega$
$10.8 \mathrm{k} \Omega$
$14 \mathrm{k} \Omega$
$18 \mathrm{k} \Omega$
$22 \mathrm{k} \Omega$

4 (b) The thermistor is used in the 555 astable circuit shown in Figure 6.
Figure 6

The resistance of the thermistor is $4 \mathrm{k} \Omega$ at $50^{\circ} \mathrm{C}$.
Show that the time that the output of the astable is low at this temperature is approximately $280 \mu \mathrm{~s}$.
\qquad
\qquad
\qquad

4 (c) Complete the connections to the transmitter in Figure 7 so that the transmitter is switched on when the output of the 555 is low.

Figure 7

Question 4 continues on the next page

4 (d) The output of the receiver in the gardener's home is shown in Figure 8.

Figure 8

The receiver output is connected to bit D_{0} of PORTA of a microcontroller. This port is polled by the microcontroller. The microcontroller has a 1 MHz clock.
The subroutine used to measure the time that the receiver output is high is:
label1:
MOVW 0×00
MOVWR OXAO
label2:
MOVRW PORTA
ANDW 0x01
JPZ label2
label3:
INC 0xA0
MOVRW PORTA
ANDW 0x01
JPZ label4
JMP label3
label4:
RETURN

4 (d) (i) State the function of the section of code between label1 and label2.
\qquad
\qquad

4 (d) (ii) State the function of the section of code between label2 and label3.
\qquad
\qquad

4 (d) (iii) Describe the function of the section of code between label3 and label4.
\qquad
\qquad

4 (e) When the temperature is $50^{\circ} \mathrm{C}$, the output of the receiver is high for $280 \mu \mathrm{~s}$.
Estimate the value stored in 0 xA 0 at the end of each pulse from the receiver.

Turn over for the next question

$5 \quad$ Figure 9 shows the top view and front view of a white-line-following robot.
Figure 9

Figure 10 shows the circuit diagram of the motor control system.

Figure 10

5 (a) State the function of the two diodes labelled \mathbf{D} in Figure 10.
\qquad
\qquad
5 (b) The LED illuminates the white line that is being followed. The LED has a forward voltage of 3.2 V and a maximum current of 30 mA .

Calculate a suitable value for the series resistor, R, in Figure 10.
\qquad
\qquad

5 (c) The MOSFETs need a voltage from gate to source of 2.6 V for them to conduct any current from drain to source.

Show that the maximum resistance that the LDRs can have in order to turn on the MOSFETs is approximately $25 \mathrm{k} \Omega$.
\qquad
\qquad

Question 5 continues on the next page

5 (d) Figure 11 shows the characteristic of the LDRs.
Figure 11

State the minimum light intensity that must reach the LDRs so that the motors switch on. [1 mark]
\qquad

5 (e) Describe how the electronic circuit will control the robot as it follows a white line that turns to the right.
[2 marks]
\qquad
\qquad
\qquad
\qquad

5 (f) Explain why stepper motors could not be used to replace the conventional motors shown in this circuit.
\qquad
\qquad
\qquad

Turn over for the next question

6 The LM3914 is an integrated circuit containing 10 op-amp comparators and an output control circuit to produce 10 digital outputs. This is shown in Figure 12.

Figure 12

6 (a) (i) State the property of an op-amp which makes it suitable for use as a comparator.
\qquad
\qquad

6 (a) (ii) The arrangement of comparators in Figure 12 can be used as the basis of a Flash ADC. Calculate the resolution of an ADC based on this circuit.

Question 6 continues on the next page

6 (b) A student experiments with making an LED oscilloscope using the LM3914.
He also uses an 8×8 dot matrix display, a 3-bit binary counter and a 3-8 line decoder.
The LM3914 is configured so that as $\mathrm{V}_{\text {in }}$ increases the most significant output goes low. Only one output is low at any time.
In this application only the first 8 outputs are used.
The circuit diagram is shown in Figure 13.
Figure 13

Complete the circuit diagram in Figure 14 to show how three rising edge triggered D-type flip-flops can be connected to form a 3-bit binary up counter.
Label the clock input.
[4 marks]
Figure 14

6 (c) The truth table for the 3-8 line decoder is shown in Table 4.
Table 4

Inputs				Outputs									
\mathbf{C}	\mathbf{B}	\mathbf{A}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$			
0	0	0	1	0	0	0	0	0	0	0			
0	0	1	0	1	0	0	0	0	0	0			
0	1	0	0	0	1	0	0	0	0	0			
0	1	1	0	0	0	1	0	0	0	0			
1	0	0	0	0	0	0	1	0	0	0			
1	0	1	0	0	0	0	0	1	0	0			
1	1	0	0	0	0	0	0	0	1	0			
1	1	1	0	0	0	0	0	0	0	1			

State the Boolean expression for output 6.
[1 mark]
\qquad

6 (d) The input to the LM3914 is set to 2.1 V and the input to the 3-bit binary counter is connected to an 800 Hz astable.

Describe and explain what will be seen on the display.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

7 Shaft encoders are usually made to give either a binary coded output or a Gray coded output.

7 (a) State the advantage that a Gray coded shaft encoder has over a binary coded shaft encoder.
\qquad
\qquad

7 (b) Figure 15 shows a partially completed Gray coded shaft encoder.
Figure 15

Complete the diagram by shading in the correct areas.

7 (c) A student fits a Gray coded shaft encoder on the wheel of a push-along toy she has been making for a young child. She uses four reflective opto-switches as sensors for the shaft encoder.

Describe a reflective opto-switch. You may use a diagram if you wish.
\qquad
\qquad
\qquad
\qquad

7 (d) The student wants the toy to make sounds as it is pushed along.
The output from the opto-switches is connected to a Digital to Analogue Converter
(DAC). The output from the DAC is connected to a voltage controlled astable as shown in Figure 16.

Figure 16

7 (d) (i) The op-amp power supplies are $\pm 9 \mathrm{~V}$.
The outputs from the opto-switches are either 0 V or +5 V .
Calculate the output voltage of op-amp X when all of the opto-switches are giving a logic 1 output.
[3 marks]
\qquad
\qquad
\qquad

7 (d) (ii) State the function of op-amp Y.
\qquad
\qquad

8 Figure 17 shows an incomplete circuit diagram for an H -bridge driver.
Figure 17

8 (a) (i) Complete Figure 17 by adding the correct symbols for the two missing MOSFETs.
[2 marks]

8 (a) (ii) State the purpose of the diodes.
\qquad
\qquad

8 (b) The motor is not powered under the following three conditions:

1. TR1 and TR3 are conducting, while TR2 and TR4 are not conducting.
2. TR1 and TR3 are not conducting, while TR2 and TR4 are conducting.
3. All MOSFETs are not conducting.

Describe any differences to the behaviour of the motor in these three conditions.
[2 marks]
\qquad
\qquad
\qquad
\qquad

8 (c) Referring to Figure 17:
when point \mathbf{A} is positive and point \mathbf{B} is negative, the motor rotates clockwise, when point \mathbf{B} is positive and point \mathbf{A} is negative, the motor rotates anticlockwise.

Complete the truth table (Table 5) for the H -bridge control system shown in Figure 17. [5 marks]

Table 5

\mathbf{X}	\mathbf{Y}	\mathbf{P}	\mathbf{Q}	\mathbf{A}	\mathbf{B}	
0	0					
0	1					
1	0					
1	1					

END OF QUESTIONS

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2016 AQA and its licensors. All rights reserved.

