AS

ELECTRONICS
 ELEC1

INTRODUCTORY ELECTRONICS

Mark scheme
June 2016
Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

[^0]

$\mathbf{1}$	(b)	(i)	$\mathrm{E}=\bar{A} \cdot \mathrm{~B}$	$\mathbf{1}$	
$\mathbf{1}$ (b) (ii)					

| $\mathbf{1}$ | (b) | (iii) | $\mathrm{Q}=\bar{A} \mathrm{~B}+\mathrm{A} \bar{B} /$ also accept $\mathrm{A} \bigoplus \mathrm{B}$ | $\mathbf{1}$ | Correct terms $/$
 OR gate |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| $\mathbf{1}$ | (c) | | AND (EXOR;) NOR NAND \quad OR | 1 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

2	(b)	(i)	driver	1

$\mathbf{2}$	(b)	(ii)	adjustable voltage reference	$\mathbf{1}$	
$\mathbf{2}$	(b)	(iii)	comparator (also accept - audio frequency generator/slow astable)		

3	(a)	(ii)	As the temperature increases, the resistance decreases or negative gradient	$\mathbf{1}$	

| $\mathbf{3}$ | (b) | Thermistor (C)
 This thermistor gives the largest change in resistance over the stated
 temperature range | $\mathbf{2}$ | |
| :--- | :--- | :--- | :--- | :--- | :--- |

| $\mathbf{3}$ | (d) | The real OP amp is likely to saturate above OV rail and below the 9V rail.
 Discussion as to how outputs from Op Amp affect the Red and Green LEDs
 given that they require 1.7 V and 2.5 V respectively to switch on. | $\mathbf{1}$ |
| :---: | :---: | :---: | :--- | :--- | :--- |

Question	Part	Sub- part	Answer	Mark	Comments/ Guidance

$\mathbf{4}$	(a)	(i)	7.5 V	$\mathbf{1}$	
$\mathbf{4}$ (a) (ii) 10 mA $\mathbf{1}$					

Question	Part	Sub- part	Answer	Mark	Comments/ Guidance

5	(a)	(iii)

Back emf (coil) when transistor is switched (off) could damage the transistor.
Reverse bias diode used to tie high induced voltage to top rail of power supply.
2

5
(b)

$$
\text { The relay coil needs } \mathrm{I}=\mathrm{V} / \mathrm{R}, \mathrm{I}=12 \mathrm{~V} / 160 \Omega, \mathrm{I}=75 \mathrm{~mA}
$$

| $\mathbf{5}$ | (d) | MOSFET has a very high input resistance so won't demand current from
 previous stage
 Or Higher current gain
 Or lower power dissipation | $\mathbf{1}$ | |
| :--- | :--- | :--- | :--- | :--- | :--- |

| $\mathbf{6}$ | (b) | The expression is constructed by using the lines of the truth table -
 $\mathrm{Q}=1$ where one line OR another is correct (OWTTE) | $\mathbf{2}$ | |
| :--- | :--- | :--- | :--- | :--- | :--- |

[^0]: Copyright © 2016 AQA and its licensors. All rights reserved.
 AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the school/college.

