A-LEVEL

Electronics

ELEC1 - Introductory Electronics
Mark scheme

June 2015

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

| 1 | (b) | Op-amp - comparator OR - audio signal generator OR - light sensor unit
 Potentiometer - adjustable voltage reference
 Power MOSFET - audio amplifier | $\mathbf{1}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

3	(a)			\square	2	
3	(b)	(i)	$80 \mathrm{~mA}+5 \mathrm{~mA}=85 \mathrm{~mA}$		1	Answer - 1
3	(b)	(ii)	$12 \mathrm{~V}-5.1 \mathrm{~V}=6.9 \mathrm{~V}$		1	Calculation and answer 1
3	(b)	(iii)	$\mathrm{R}=6.9 \mathrm{~V} / 85 \mathrm{~mA}=81 \Omega$		2	Calculation and answer 2
3	(c)	(i)	$P=V^{2} / R \quad P=(6.9 \times 6.9) / 75 \quad P=0.64 W$ Hence P is approx. 0.6 W		2	Calculation and answer - 2
3	(c)	(ii)	$\mathrm{I}=\mathrm{V} / \mathrm{R} \quad \mathrm{I}=6.9 / 75 \quad \mathrm{I}=92 \mathrm{~mA}$		2	Calculation and answer 2

4	(a)	$\begin{aligned} & \mathrm{D}=\mathrm{C}+\mathrm{B} \\ & \mathrm{E}=\bar{A} \\ & \mathrm{G}=\bar{A}+\bar{B} \end{aligned}$						3	1 1 1
4	(b)	INPUTS			INTERMEDIATE OUTPUTS			5	2 marks for each of correct columns D \& G 1 mark for column E
		C	B	A	D	E	G		
		0	0	0	0	1	1		
		0	0	1	0	0	0		
		0	1	0	1	1	0		
		0	1	1	1	0	0		
		1	0	0	1	1	1		
		1	0	1	1	0	0		
		1	1	0	1	1	0		
		1	1	1	1	0	0		

5	(a)	(i)	Log graph enables a wide range of values to be displayed on the same axis. Allow - (enables values to be displayed as straight line)	1	
5	(a)	(ii)	7 lux	1	
5	(b)		1 mark for connections correct way round	1	
5	(c)	(i)	$60 \mathrm{k} \Omega /(60 \mathrm{k} \Omega+30 \mathrm{k} \Omega) \mathrm{)} \times 12 \mathrm{~V}=8 \mathrm{~V}$	2	Working - 1 Answer - 1
5	(c)	(ii)	$\mathrm{R}_{1}=11 \mathrm{k} \Omega$ to give same value at Y as switching voltage at X (2:1 ratio) (No ecf on value)	2	Reason / calculation - 1 Answer - 1
5	(d)		The op-amp is not ideal and will saturate above 0 V Need to drop voltage Acceptable method	3	Saturation - 1 Voltage drop - 1 Method - 1

