Centre Number			Candidate Number		
Surname					
Other Names					
Candidate Signature					

General Certificate of Education Advanced Subsidiary Examination June 2015

Electronics

ELEC1

Unit 1 Introductory Electronics

Tuesday 12 May 2015 9.00 am to 10.00 am

For this paper you must have:

- a pencil and ruler
- a calculator
- a Data Sheet (enclosed).

Time allowed

• 1 hour

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 67.

Answer all questions in the spaces provided.

1 A student has been asked to design a low-temperature warning system for an incubator at a wildlife centre.

The design brief for the system has the following features.

- A sensor monitors the incubator temperature and the system detects when the temperature drops below a certain level, which can be adjusted.
- A light sensor unit detects when it is dark.
- An audio signal is sent to a loudspeaker only when the warning system is activated when it is dark.
- **1 (a)** Draw a system diagram to represent the solution by using one of each of the subsystems below.

adjustable voltage re	eference audio	amplifier	audio signal	generator	comparator
light sensor unit	loudspeaker	temperatu	re sensor	two input lo	gic gate [7 marks]

1 (b)	State the subsystem in which each of the following components could be used. [3 marks]					
	op-amp					
	potentiometer					
	nower MOSEET					

10

A fridge is fitted with a temperature-sensing unit to indicate whether the temperature inside the fridge is too high, too low, or at a safe temperature.

The system consists of a temperature sensor that produces a 2-bit binary output, a logic circuit and a low current, common cathode 7-segment display.

Figure 1 shows a block diagram of the system.

Figure 1

Table 1 shows the operation of the system.

Table 1

Fridge temperature		erature or output	7-segment display	
	X	Y	output	
< 3 °C	0	0	L	
3 °C to 4 °C	0	1	S	
4 °C to 5 °C	1	0	S	
> 5 °C	1	1	Н	

Key
L = low
S = safe
H = high

2 (a) Complete **Table 2** to show the logic signals required on lines a to g to display the specified characters.

[3 marks]

Table 2

X	Y	а	b	С	d	е	f	g	Display
0	0								L
0	1								S
1	0								S
1	1								Н

Question 2 continues on the next page

2 (b)	Circle the single log	gic gate which v	would generat	e the required	signal for segr	ment a. [1 mark]
	AND I	EXOR	OR N	NAND	NOR	NOT
2 (c)	The system in Figu An equivalent system Explain the different	em could have	been designed	d using a comr		
o (a)	The LEDe in the 7			to ato al lavo avvenue		
2 (d)	The LEDs in the 7- Figure 2 shows tw					
			Figure 2			
	method A			method	B	
a b c d e f		omon o 0 V		a a b c d f g g d	b common	-○ 0 V
2 (d) (i)						
	State one disadvar	ntage of metho	d A.			[1 mark]
	State one disadvar	ntage of metho	d A .			[1 mark]
	State one disadvar	ntage of metho	d A .			[1 mark]
	State one disadvar	ntage of metho	d A .			[1 mark]
	State one disadvar	ntage of metho	d A .			[1 mark]

10

2 (d) (ii)	Calculate the value of the current limiting resistors required in method B to limit the current in each segment to 20 mA. Assume the voltage from the logic circuit is 5 V and the forward voltage drop across each LED in the 7-segment display is 2.2 V.						
		- g g ,			[2 marks]		
2 (d) (iii)	Circle the appropriat	e value for these	resistors from th	e following list of	E24 resistors. [1 mark]		
	110 Ω	150 Ω	270 Ω	1.1 kΩ	1.5 kΩ		

Turn over for the next question

A Zener diode is used to produce a stabilized $5.1~\mathrm{V}$ from an unregulated $12~\mathrm{V}$ supply to power a project that requires $80~\mathrm{mA}$. Part of the circuit is shown in **Figure 3**.

Figure 3 +12 V O-R project 0 V O-Y 3 (a) Draw on **Figure 3** the Zener diode connected correctly between points **X** and **Y**. [2 marks] 3 (b) The Zener diode requires at least 5 mA to maintain its Zener voltage of 5.1 V. Calculate the minimum current flowing through R when switch S is closed. 3 (b) (i) [1 mark] $\bf 3$ (b) (ii) Calculate the voltage across resistor $\bf R$ under these conditions. [1 mark] **3 (b) (iii)** Calculate the value of resistor **R**. [2 marks]

3 (c)	The circuit in Figure 3 is now constructed using a value of 75 Ω for resistor R .	
3 (c) (i)	Show that the power dissipated in the resistor is approximately $0.6~\mathrm{W}.$ [2 marks]	
3 (c) (ii)	The project is disconnected by turning switch ${\bf S}$ off, but the $12~{\rm V}$ supply remains connected.	
	Calculate the current that now flows through the Zener diode. [2 marks]	

Turn over for the next question

4 Figure 4 shows a logic circuit with three inputs **A**, **B** and **C**.

Figure 4

4 (a) Write the Boolean expressions for the signals at the intermediate points **D**, **E**, and **G** in terms of the inputs **A**, **B** and **C** only.

[3 marks]

V	
E	

G

4 (b) Complete the truth table (Table 3) for the logic signals at the intermediate points D, E and G.

[5 marks]

Table 3

	Inputs		Intermediate points			
C	В	A	D	E	G	
0	0	0				
0	0	1				
0	1	0				
0	1	1				
1	0	0				
1	0	1				
1	1	0				
1	1	1				

4 (c) The final output (o in Figure 4	could be ex	pressed in the	e following way
. ,-	, indimal carpar	~g		.p. 00000	,

$$\mathbf{Q} = (\overline{A}.\overline{B}) + (\overline{A}.C) + (\overline{A}.B)$$

Show how the circuit in Figure 4 could be reduced to a single gate.

Start by simplifying the equation for **Q**.

You may use Boolean algebra **and** / **or** a Karnaugh map to generate your solution. You must show your working.

[3 marks]

 	 •••••	

The single equivalent gate is.....

11

Turn over for the next question

5 An LDR is being used as a light sensor in a system that will switch on a porch light when it gets dark.

The characteristic for the LDR is shown in Figure 5.

Figure 5

5 (a) (i)	Explain how the use of the logarithmic scale in Figure 5 is helpful when displaying this
	characteristic.

5 (a) (ii) The LDR has a resistance of $60~k\Omega$ when the light level causes the system to switch on the porch light.

State the value of this light level by reading from the graph in **Figure 5**.

[1 mark]

[1 mark]

light level.....lux

5 (b) Figure 6 shows the circuit for detecting the light level.
 The design makes use of an op-amp acting as a comparator.
 A red LED acts as an output indicator to aid testing of the detector circuit.

Figure 6

Draw on **Figure 6** the connections from points X and Y to the op-amp inputs so that the red LED switches on when the light level falls below the required value.

[1 mark]

5 (c) (i)	Calculate the voltage at point X when the red LED switches on. [2 marks]
5 (c) (ii)	The reference voltage at Y is produced by two fixed-value resistors.
	Calculate the value for resistor ${\bf R_1}$ in order to achieve the required circuit operation. [2 marks]

Question 5 continues on the next page

5 (d)	The red LED was found to stay on dimly even when the light level was well above the value expected to switch it off.
	Explain why this might happen and how the problem could be solved. [3 marks]
5 (e)	Following successful testing of the circuit, the LED is replaced with the final output stage. This includes a high power $230~\mathrm{V}$ mains lamp which is controlled by the op-amp.
	The output circuit is based on an n-channel MOSFET with an electromagnetic relay to switch on the $230\ V$ lamp.
	Complete the circuit in Figure 7 using the MOSFET, the relay, and any other components needed.
	[4 marks]
	Figure 7
	○
	230 V
	from op-amp O———
	○

14

Figure 8 is a simplified diagram of a road safety system for traffic travelling towards a road tunnel. The tunnel is too narrow for two-way traffic and too low for lorries.

Figure 8

C and **L** are laser beam sensors placed at different heights on the road just before the tunnel. When a beam is broken, the sensor produces a logic 1.

Cars will break the beam at sensor ${\bf C}$ only. Lorries will break the beams at both sensor ${\bf L}$ and sensor ${\bf C}$.

M is an electronic message display that tells lorries to take a diversion. The message display lights up when it receives a logic 1.

T is a sensor buried in the road inside the tunnel. It produces a logic 1 when an oncoming car is in the tunnel.

The red stop light **R** comes on when a lorry is detected or when there is an oncoming car in the tunnel. **R** will light up when it receives a logic 1.

The green go light **G** comes on when a car is detected and there are no oncoming cars in the tunnel. **G** will light up when it receives a logic 1.

6 (a) Complete the truth table (**Table 4**). Some of the data has already been entered for you.

[4 marks]

Table 4

Inputs			Outputs		
Sensor T	Sensor C	Sensor L	Message display M	Red stop light R	Green go light G
0	0	0	0	0	1
0	0	1	0	0	1
0	1	0		0	
0	1	1		1	
1	0	0		1	
1	0	1	0	1	0
1	1	0		1	
1	1	1		1	

6 (b)	Write the simplest Boolean expression for the red stop light R in terms of T , C and [2 r]	d L. narks]

Question 6 continues on the next page

6 (c) (i)	The expression for the green go light G could be written as $\mathbf{G} = \overline{T} \cdot (\overline{C} + \overline{L})$	
	Draw on Figure 9 the logic diagram for this expression using only NOT, AND and OR gates.	
	[3 marks	s]
	Figure 9	
	Τ ∘—	
	c ○—	
	L -	
6 (c) (ii)	Draw on Figure 10 an alternative logic diagram for the green go light G using only NAND gates. [3 marks	s]
	Figure 10	
	T	
	c	
	L	
	END OF QUESTIONS	

Copyright © 2015 AQA and its licensors. All rights reserved.