Centre Number			Candidate Number		
Surname					
Other Names					
Candidate Signature					

General Certificate of Education Advanced Level Examination June 2014

Electronics ELEC5

Unit 5 Communications Systems

Wednesday 11 June 2014 9.00 am to 10.30 am

For this paper you must have:

- a pencil and ruler
- a calculator
- a Data Sheet (enclosed).

Time allowed

• 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

For Examiner's Use			
Examiner's Initials			
Question	Mark		
1			
2			
3			
4			
5			
6			
7			
TOTAL			

	Answer all questions in the spaces provided.
1 (a)	Draw a system diagram below for a radio transmitter consisting of four subsystems. Label each subsystem and indicate the type of signal at the output of each subsystem. [8 marks]

1 (b)	It is possible to send signals along a twisted pair, coaxial cable or optical fibre. Compare the use of these media.					
	You should include references to bandwidth and security. [6 marks]					

3

Turn over for the next question

Figure 1 shows the system diagram of a superheterodyne radio receiver.

Figure 1

2 (a)	Complete Figure	1 by adding	the names of block '	1 and block 2
-------	-----------------	-------------	----------------------	---------------

[2 marks]

2 (b) (i)	Describe the function of block 1 .	[3 marks]
2 (b) (ii)	State the function of block 2 .	[1 mark]

2 (c)	The radio receiver local oscillator is on a frequency of $1455~\rm kHz$. The if amplituned to $455~\rm kHz$ and the local oscillator frequency is higher than the signal	
2 (c) (i)	Calculate the received radio frequency.	[1 mark]
2 (c) (ii)	Calculate the image or second channel frequency.	[1 mark]
2 (c) (iii)	Explain what the image or second channel response is, and why it occurs.	[2 marks]

Turn over for the next question

3	$PMR446$ (Private Mobile Radio, $446\ MHz)$ is a part of the UHF radio frequency range that is available for business and personal use in most of the EU. $PMR446$ is used in consumer-grade walkie-talkies where analogue FM is used.			
3 (a) (i)	State the meaning of t	the term UHF .		[1 mark]
3 (a) (ii)	State the meaning of t	the term FM .		[1 mark]
3 (a) (iii)	Explain how analogue	information is ca	rried on FM.	[2 marks]
3 (b)	Table 1 shows the cha	annels available f Tabl e		
		PMR Channel	Frequency (MHz)	
		1	446.00625	
		2	446.01875	
		3	446.03125	
		4	446.04375	
		5	446.05625	
		6	446.06875	
		7	446.08125	
		8	446.09375	
3 (b) (i)	Calculate the wavelen	gth of the radio s	ignal generated on ch	nannel 8. [2 marks]

3 (b) (ii)	The optimum antenna length for a hand-held radio is equal to one half of a half-wave dipole. Calculate this length for channel 8.	
		[1 mark]
3 (c) (i)	Calculate the spacing of PMR446 channels.	[1 mark]
3 (c) (ii)	Show by calculation that a maximum information frequency of $3\ kHz$ and a d $\pm 2.5\ kHz$ can be supported in this system.	eviation of [2 marks]
3 (c) (iii)	Explain the effect of using $\pm 5~\mathrm{kHz}$ deviation.	[2 marks]
3 (d)	All these channels are used for half-duplex communication. Explain the meaning of the term half-duplex and how each channel can be a two-way communication.	used for [2 marks]

Turn over for the next question

4	The microphone signal in a mobile phone is analogue.
4 (a)	The signal is converted using an ADC at a sampling rate of $8~\mathrm{kHz}$.
4 (a) (i)	Explain why the input frequency should ${f not}$ be greater than 4 kHz. [2 marks]
4 (a) (ii)	How could the signal frequency be limited to 4 kHz? [1 mark]
4 (a) (iii)	Each sample results in eight bits.
	At the sampling rate given in part (a) , show that the data rate of the resulting signal is 64 kbps.
	[1 mark]
4 (b)	The ADC produces an 8-bit parallel output. What subsystem is required to make the output suitable to be transmitted on the uplink channel?
	[1 mark]

4 (c)	The short message service (SMS) on a mobile phone can send a maximum of 160 characters per message. Each ASCII character consists of seven bits.
4 (c) (i)	Calculate the number of bytes in an SMS message of maximum length. [2 marks]
4 (c) (ii)	How long does it take to send just the data in a maximum length SMS message at a data rate of 64 kbps? [2 marks]
4 (c) (iii)	The SMS message must also contain other information. State one example of this other information. [1 mark]

10

Turn over for the next question

5	A friend gives you an audio amplifier to test. He says the sound output is noisy and distorted.
5 (a)	Noise and distortion both cause unwanted changes in the audio signal. Referring to the changes that occur in the signal, explain the difference between noise and distortion. [4 marks]
5 (b)	Noise and distortion in an amplifier can be investigated by applying a sinusoidal signal to the input and displaying the input and output waveforms on an oscilloscope, as Figure 2 shows.
	For the oscilloscope trace connected to the input, timebase = 1 ms/div , y-sensitivity = 5 mV/div
	Figure 2
	input output
	State the peak voltage and period, and calculate the frequency for this input signal. [3 marks]
	peak voltage
	period
	frequency

5 (c)	With the input signal set to $0~\mathrm{V}$, there is no measurable output signal. Explain therefore whether the amplifier suffers from noise and/or distortion.	[2 marks]
5 (d)	Signal-to-noise ratio is a quantity which may appear on the data sheet for an	n amplifier.
	signal-to-noise ratio = $20 \log_{10} \left\{ \frac{V_{\text{signal}}}{V_{\text{noise}}} \right\} \text{dB}$	
	The data sheet for a simple amplifier designed for an intercom system state a signal-to-noise ratio of $60~\mathrm{dB}$. The rms output voltage is $4~\mathrm{V}$. Calculate the rms voltage of the noise expected from this amplifier.	s
		[3 marks]

12

Turn over for the next question

A graphic equalizer is a piece of equipment commonly used in recording studios to adjust the levels of different frequencies in an audio signal.

Figure 3 shows a typical graphic equalizer.

Figure 3

Each slider controls the amplitude of a particular, small band of frequencies, and the sliders together cover the entire audio range.

6 (а)	State the typical range of audio frequencies.	[2 marks]
		į manto,

6 (b) A student decides to build a simple graphic equalizer, and for each frequency band she uses two active filters, as shown in **Figure 4**.

Figure 4

6 (b) (i)	Write the name	of each type of filter i	in the spaces provided	on Figure 4
-----------	----------------	--------------------------	------------------------	-------------

[2 marks]

6	(b) (ii)	What is meant by	y the breakpoint	frequenc	y of a filter?
---	----------	------------------	------------------	----------	----------------

[1 mark]

6 (b) (iii)	One of the standard frequency bands used in graphic equalizers is centred on 160 Hz.
	Show that the breakpoint frequency for the filter on the right of Figure 4 is at
	approximately this frequency.

[3 marks]

 	 •••••

6 (b) (iv) Calculate the approximate value that C would have to give a breakpoint frequency of 160 Hz for the filter circuit on the left of **Figure 4**.

		-					•	
 	 	٠.		 				

[2 marks]

10

Turn over for the next question

7 (a)	Draw a labelled diagram of a length of a step-index optical fibre laid on a currincluding reference to the refractive index of parts of the fibre.	ved path,
	Include on your diagram the path of a ray of light travelling through the fibre.	[4 marks]
7 (b)	Name an output device which can be used to create pulses that will travel thr	rough the
<i>i</i> (b)	fibre.	[1 mark]
7 (c)	State how optical signals can travel along a fibre that is curved.	[1 mark]
7 (d)	Describe the cause and effect of scattering and dispersion on an optical sign travelling along a fibre.	gnal [4 marks]
	scattering	
	dispersion	

END OF QUESTIONS

There are no questions printed on this page DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED Acknowledgement of copyright-holders and publishers

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements in future papers if notified.

Question 6 ©Thinkstock

Copyright © 2014 AQA and its licensors. All rights reserved.

