AQA

A-LEVEL ELECTRONICS

Further Electronics ELEC2

Mark scheme

June 2014

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

COMPONENT NUMBER:

ELEC2
Further Electronics

Question	Part	Sub part	Marking Guidance	Mark	Comments	
1	(a)		correct substitution into voltage gain formula gain = 100	2	Award 2 marks for correct answer	
1	(b)		a correctly wired amplifier, inverting or non inverting non-inverting amplifier \checkmark resistor ratios to give Gv of \|100	\checkmark all resistors between 1 k and 4M7 \checkmark	4	

| 1 | (c) | (i) | Example Voltage gain x bandwidth is a constant \checkmark
 Or Large gain $=$ small bandwidth \checkmark | 1 |
| :---: | :---: | :---: | :--- | :--- | :--- |

| 1 | (c) | (ii)voltage gain \times frequency $=10^{6}$
 $=>$ gain at 40 kHz is $25 \checkmark$
 $25 \times 40 \mathrm{mV}=1 \mathrm{~V} \checkmark$ | 2 | |
| :--- | :--- | :--- | :--- | :--- | :--- |

2	(b)	time $=0.69 R C$ $=0.69 \times 6200 \times 0.0068 ~$ $29.1 s ~$ Accept 29	2	

| 2 | (c) | statement of suitable time (example) 1 hour (3600s) \checkmark
 $=>R=3600 /(0.69 \times 0.0068)$
 $R=767 \mathrm{k} \Omega$
 Accept the correct $R-6.2$
 Accept $1 \mathrm{M} \Omega$ (as 767 resistors don't exist!) | 2 | |
| :--- | :--- | :--- | :--- | :--- | :--- |

| 2 | (d) | leakage current \checkmark
 comment on charging current close to leakage current \checkmark so that Vs/2 is never reached \checkmark | $\mathbf{3}$ | |
| :--- | :--- | :--- | :--- | :--- | :--- |

2	(e)	gate 1 output goes low diode conducts discharging capacitor through $1 \mathrm{k} \Omega$ resistor	2	
3	(a)	discharge to junction of R_{A} and R_{B} trigger linked to threshold threshold to junction of R_{B} and $\mathrm{C} \checkmark$	3	

| 3 | (b) | graph between 4 and 8V \checkmark
 charging curve when output goes high \checkmark
 discharging curve when output goes low \checkmark | 3 |
| :---: | :---: | :--- | :--- | :--- | :--- |

3
(c)
substitution into correct 555 frequency formula \checkmark
correct rearrangement \checkmark
Calculated value of $35.5 \mathrm{k} \Omega \checkmark$

3

correct rearrangement
Calculated value of $35.5 \mathrm{k} \Omega$

3	(d)		substitution into correct 555 frequency formula and correct rearrangement calculated value = approx. 680 K	2	
4	(a)	(i)	Biases the MOSFETs \checkmark	1	
4	(a)	(ii)	Provides power gain \checkmark	1	
4	(b)	(i)	substitution into a gain formula correct value $=40 \mathrm{k} \Omega$	2	
4	(b)	(ii)	Example Overall voltage gain of the amplifier includes the voltage gain of the source followers Voltage gain of source followers <1	2	
4	(c)	(i)	The op-amp does not saturate at the supply voltages \checkmark	1	
4	(c)	(ii)	power output formula \checkmark substitution $P=\left(7^{2} / 2 \times 4\right)$ $P=6.125 W \quad \checkmark$	3	
4	(c)	(iii)	Increase power supply voltages \checkmark	1	
5	(a)		all Rs to 0 V all flip-flops D connected to Qbar \checkmark Q to following flip-flop CK \checkmark input to first CK	4	

| 5 | (b) | summing amplifier formula and attempt at substitution \checkmark
 correct substitution \checkmark
 output voltage $=-6.875 \mathrm{~V} \checkmark$ | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- |

5	(c)	correct down counter shape ramp \checkmark correct polarity -ve, which returns to OV every 16 clock pulses correct amplitude (9.375V) evidence of steps in ramp	4
6	(a)	on the rising edge of the clock pulse the value of D is transferred to $\mathbf{Q} \checkmark$ some correct mention of S and/or R \checkmark some correct mention of $\overline{\mathbf{Q}}$	3 max

| 6 | (b) | first data input labelled as serial data input and label of clock input correct \checkmark
 all clock inputs connected together \checkmark
 Q connected to following D
 Resets not left floating \checkmark | 4 | |
| :--- | :---: | :--- | :--- | :--- | :--- |

| 6 | (c) | Example 4-input NOR gate or equivalent \checkmark
 output to serial data input \checkmark
 inputs from all Qs or all $\overline{\mathbf{Q}} s \checkmark$ | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- |

| 6 | (d) | QA goes high on rising edge of first clock pulse for one clock pulse \checkmark
 repeats only on $6^{\text {th }}$ clock pulse \checkmark | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- |

