Centre Number			Candidate Number		
Surname					
Other Names					
Candidate Signature					

General Certificate of Education Advanced Subsidiary Examination June 2014

Electronics ELEC1

Unit	1	Introductory	Flectronics
UIIIL	_	iiili ouulloi y	Liecti oilica

Monday 12 May 2014 1.30 pm to 2.30 pm

For this paper you must have:

- a pencil and ruler
- a calculator
- a Data Sheet (enclosed).

Time allowed

• 1 hour

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 67.

For Examiner's Use							
Examiner's Initials							
Question	Mark						
1							
2							
3							
4							
5							
6							
TOTAL							

A II		•	41		and the second second
Answer a ı	I questions	ın	tne s	paces	provided.

1	A student designs an electronically controlled cat flap to enable her cat to enter and
	leave her house through a small hinged flap in a door.

The cat has a small magnet fitted in its collar which is detected by sensors both inside and outside the flap. When the magnet is detected by either sensor, the flap is unlocked by a solenoid for a fixed length of time and then locked again.

1 (a) Draw a system diagram as a possible plan for this system, include in your plan two reed switches as magnet sensors, a means of combining the inside and outside signals, and subsystems to provide the other functions.

[6 marks]

1 (b) The reed switch closes when a magnet is near. Draw a circuit diagram using a reed switch, a battery, and **one** other component that would give a signal of $0\ V$ only when a magnet is placed near to the reed switch. Label the output of this circuit.

[3 marks]

1 (c) The solenoid requires a high current to operate it.
State the name of a semiconductor device that would be suitable to provide this current.

[1 mark]

10

2 The Boolean equation for a logic circuit with inputs A and B and output Q is

$$Q = (A.B) + \overline{(A+B)}$$

2 (a) Complete the truth table to show the logic values of the terms in **Table 1** for all the combinations of variables A and B.

[5 marks]

Table 1

A	В	A.B	A+B	A+B	Q
0	0				
0	1				
1	0				
1	1				

2 (b) Complete **Figure 1** using any gates to show how Q can be generated from inputs A and B to represent the Boolean equation above.

[5 marks]

Figure 1

A 0-----

 \longrightarrow Q

В 0-----

2 (c) Using one or two logic gates, draw a simpler logic circuit below that would give the function described by the Boolean equation above.

[2 marks]

12

3	A student designs a circuit to obtain a USB compatible output voltage from a car power socket.								
	The car's power socket voltage can vary from $10.9\ V$ to $14.4\ V$.								
	The USB port voltage must be maintained between $4.4\ V$ and $5.25\ V$.								
	The current demand for the USB device can rise to a maximum of 90 mA.								
3 (a) (i)	Complete Figure 2 by labelling the positive and negative connections from the power socket and draw a Zener diode and a resistor in their correct positions. [4 mark]								
	Figure 2								
	O—————————————————————————————————————								
3 (a) (ii)	\bigcirc — \bigcirc 0 V A resistor alone can be used to drop a voltage to a lower level.								
o (u) (ii)	Explain why the Zener diode is also required in this application.	[2 marks]							

3 (b)	A Zener diode with a voltage rating of $4.7~\rm V$ is chosen by the student. The minimum Zener current should be $10~\rm mA$ under all conditions.
3 (b) (i)	Calculate the minimum voltage across the resistor. [1 mark]
3 (b) (ii)	Calculate the current through this resistor when the output current is at its maximum. [1 mark]
3 (b) (iii)	Show that the required resistor value is $62~\Omega.$ [2 marks]
3 (c)	The power socket voltage now increases to its maximum. With the resistor value given in part (b) (iii) above, calculate:
3 (c) (i)	the voltage now present across the resistor [1 mark]
3 (c) (ii)	the current through the resistor under these new conditions [1 mark]
3 (c) (iii)	the power dissipated by the resistor under these new conditions. [2 marks]

- 4 An npn junction transistor is to be used as a switch to control a small dc motor.
- **4 (a) (i)** Draw in the correct place the transistor symbol and label the leads of the transistor in the spaces shown in **Figure 3**.

[4 marks]

Figure 3

4 (a) (ii) Add to **Figure 3** the component required to protect the transistor from the back emf of the motor.

-○ 0 V

[2 marks]

- **4 (b)** The motor current is 100 mA when it is running.
- 4 (b) (i) State the collector current of the transistor when the motor is running.

[1 mark]

4 (b) (ii) The transistor has a current gain (ratio of collector current to base current) of 40. Calculate the minimum base current when the motor is running.

[1 mark]

10

4 (b) (iii)	The input voltage at X which saturates the transistor is 5.2 V. Calculate the value of R , the resistor required.	
	[2 marks]	

Turn over for the next question

Turn over ▶

A student designs a water level alarm system for the river next to where he lives. He decides to use a float, which is attached to a potentiometer connected to an electronic circuit, as shown in **Figure 4**.

Figure 4

As the float rises, the output voltage from the potentiometer increases, and at a certain voltage the op-amp output changes, turning on the alarm.

5 (a)	State the type of op-amp circuit used in Figure 4 .	[1 mark]
5 (b)	State the correct name for the op-amp input labelled ${f A}$.	[1 mark]
5 (c)	Show that the value of the fixed voltage at ${\bf A}$ is $4.8~{\rm V}.$	[2 marks]

5 (d) The student measures the potentiometer output voltage at different river depths, and produces **Figure 5**.

Figure 5

5 (d) (i) Using **Figure 5**, state what the output of the op-amp should be when the river depth is 2.5 m. Give a reason for your answer.

[2 marks]

5 (d) (ii) Estimate from **Figure 5** the river depth at which the alarm will sound.

[1 mark]

5 (e) When the student tests the circuit, he finds that even when the river is at a safe level there is still a very faint sound from the alarm.

Explain why this might happen with a real op-amp.

ΓZ	m	а	r	ks	1
ıJ		а		7.3	•

10

Turn over ▶

A bank uses a 7-segment display to tell customers which cashier is free, by displaying the numbers 1 to 5.

The logic circuit operating the display has a 3-bit binary input XYZ.

It has seven outputs for the segments a-g.

A logic 1 is required to light a segment.

Figure 6 shows the display with segments b and c illuminated to show the number 1.

Figure 6

6 (a) Put a tick in the box that corresponds to the segments for the numbers 3 and 5 being illuminated.

[1 mark]

3	5	Tick
b, c, d, g	a, c, d, f, g	
a, c, d, f, g	b, c, d, g	
a, b, c, d, g	a, c, d, f, g	
a, b, c, d, g	a, b, d, e, f, g	

6 (b) Inputs 000, 110 and 111 do not light the display, because there are only five cashiers. Complete **Table 2** showing how the segments lit correspond with the 3-bit binary input.

[3 marks]

Table 2

cashier	binary input		segment							
	X	Y	Z	а	b	С	d	е	f	g
-	0	0	0	0	0	0	0	0	0	0
1	0	0	1					0		0
2	0	1	0					1		1
3	0	1	1	1	1	1	1	0	0	1
4	1	0	0					0		1
5	1	0	1	1	0	1	1	0	1	1
-	1	1	0	0	0	0	0	0	0	0
-	1	1	1	0	0	0	0	0	0	0

6 (c)	Write the simplest Boolean expression, in terms of inputs $X,Y,Z,$ for segme e and g.				
	e =				
	g =				
6 (d)	Which single logic gate could be used to give the output g from the inputs?	[1 mark]			
6 (e)	The Boolean expression for output f is				
	$f = (X.\overline{Y})$				
	Draw a logic circuit using only 2-input NAND gates to give this output.	[3 marks]			

11

END OF QUESTIONS

