Electronics

Data Sheet

Resistors	Preferred values for resistors (E24) series:
	1.0, 1.1, 1.2, 1.3, 1.5, 1.6, 1.8, 2.0, 2.2, 2.4, 2.7, 3.0, 3.3, 3.6, 3.9, 4.3,

Resistor Printed Code This code consists of letters and numbers:

R means \times 1 (BS 1852)

K means \times 1000 (i.e. 10³) M means \times 1 000 000 (i.e. 10^6)

Position of the letter gives the decimal point

Tolerances are given by the letter at the end of the code, $F = \pm 1\%$, $G = \pm 2\%$, $J = \pm 5\%$, $K = \pm 10\%$, $M = \pm 20\%$.

Resistor Colour Code	Number	Colou
	_	

0	Black	
1	Brown	Tolerance
2	Red	Value ↓
3	Orange	r an - i
4	Yellow	
5	Green	
6	Blue	†
7	Violet	Multiplier
8	Grey	
9	White	

Tolerance, gold =
$$\pm 5\%$$
, silver = $\pm 10\%$, no band = $\pm 20\%$

Silicon diode $V_F = 0.7 \text{ V}$

Silicon transistor $V_{\rm be} \approx 0.7 \text{ V}$ in the on state, $V_{\rm ce} \approx 0.2 \text{ V}$ when saturated

Resistance $R_{\mathrm{T}} = R_1 + R_2 + R_{3+\ldots}$

$$\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$$
 parallel

Capacitance $\frac{1}{C_T} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots$ series

$$C_{\rm T} = C_1 + C_2 + C_{3+} \qquad \text{parallel}$$

Time constant T = CR, $T_{\frac{1}{2}} = 0.69 CR$

ac theory
$$I_{\rm rms} = \frac{I_0}{\sqrt{2}}$$
 $V_{\rm rms} = \frac{V_0}{\sqrt{2}}$

$$X_{\rm C} = \frac{1}{2\pi f C}$$

$$X_{\rm L} = 2\pi f L$$

$$X_{\rm L} = 2\pi f L$$
 reactance
 $f = \frac{1}{T}$ frequency, period

$$f_0 = \frac{1}{2\pi\sqrt{IC}}$$
 resonant frequency

reactance

This insert page should not be sent to the examiner

$$G_{\rm V} = \frac{V_{\rm out}}{V_{\rm in}}$$

voltage gain

$$G_{\rm V} = -\frac{R_{\rm f}}{R_{\rm l}}$$

inverting

$$G_{\rm V} = 1 + \frac{R_{\rm f}}{R_{\rm l}}$$

non-inverting

$$V_{\text{out}} = -R_{\text{f}} \left(\frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3} \right)$$

summing

$$V_{\text{out}} = (V_+ - V_-) \frac{R_f}{R_1}$$

difference

555 Astable and Monstable

$$T = 1.1RC$$

monostable

$$t_{\rm H} = 0.7 (R_{\rm A} + R_{\rm B})C$$

astable

$$t_{\rm L}=0.7~R_{\rm B}C$$

$$f = \frac{1.44}{(R_{\rm A} + 2R_{\rm B})C}$$

astable frequency

Electromagnetic waves $c = 3 \times 10^8 \,\mathrm{m \, s^{-1}}$

speed in vacuo

Assembler language microcontroller instructions

Mnemonic	Operands	Description	Operation	Flags	Clock cycles
NOP	none	No operation	none	none	1
CALL	K	Call subrountine	stack <=PC PC <=K	none	2
RET	none	Return from subrountine	PC <= stack	none	2
INC	R	Increments the contents of R	$(R) \le (R) + 1$	Z	1 1
DEC	R	Decrements the contents of R	$(R) \le (R) - 1$	Z	1
ADDW	K	Add K to W	$W \leq W + K$	Z, C	1
ANDW	K	AND K with W	W <= W • K	Z, C	1
SUBW	K	Subtract K from W	$W \leq W - K$	Z, C	1
ORW	K	OR K and W	$W \leq W + K$	Z, C	1
XORW	∝ Κ	XOR K and W	$W \leq W \oplus K$	Z, C	1
JMP	K	Jump to K (GOTO)	PC <= K	none	2
JPZ	K	Jump to K on zero	$PC \le K \text{ if } Z=1$	Z=1	2
JPC	K	Jump to K on carry	PC <= K if C=1	C=1	2
,					
MOVWR	R	Move W to the contents of R	(R) <= W	Z	1
MOVW	K	Move K to W	W <= K	Z	1
MOVRW	R	Move the contents of R to W	W <= (R)	Z	1