

General Certificate of Education Advanced Subsidiary Examination June 2009

Electronics

ELEC1

Unit 1 Introductory Electronics Data Sheet

Resistors	R means \times 1 K means \times 1000 (i.e. 10^3) M means \times 1 000 000 (i.e. 10^6) Position of the letter gives the decimal point Tolerances are given by the letter at the end of the code, F = \pm 1%, G = \pm 2%, J = \pm 5%, K = \pm 10%, M = \pm 20%.				
Resistor Printed Code (BS 1852)					
Resistor Colour Code	0 H 1 B 2 3 O 4 Y 5 O 6 7 V 8	olour Black Frown Red Frange Fellow Green Blue Violet Grey White	Tolerance Value Multiplier	_	
	Tolerance, gold = $\pm 5\%$	6, silver = $\pm 10^\circ$	$\%$, no band = $\pm 20\%$		
Silicon diode	$V_{\rm F} = 0.7 \text{ V}$				
	$V_{\text{be}} \approx 0.7 \text{ V in the on s}$ $R_{\text{T}} = R_1 + R_2 + R_3$		V when saturated series		
Resistance	$\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$		parallel		
Capacitance	$\frac{1}{C_T} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_2}$		series		
	$C_{\rm T} = C_1 + C_2 + C_3$	1	parallel		
Time constant	$T = CR$, $T_{1/2} = 0.69 C$	'R			
A.C. theory	$I_{\rm rms} = \frac{I_0}{\sqrt{2}}$,			
	$V_{\rm rms} = \frac{V_0}{\sqrt{2}}$	1	reactance		
	$X_{\rm C} = \frac{1}{2\pi fC}$				
	$X_{L} = 2\pi f L$ $f = \frac{1}{T}$		reactance frequency, period		
	$f_0 = \frac{1}{2\pi\sqrt{LC}}$	1	resonant frequency		

This insert page should **not** be sent to the examiner

INSERT TO M/Jun09/ELEC1 Turn over

$$G_{\rm V} = \frac{V_{\rm out}}{V_{\rm in}}$$

voltage gain

$$G_{\rm V} = -\frac{R_{\rm f}}{R_{\rm l}}$$

inverting

$$G_{\rm V} = 1 + \frac{R_{\rm f}}{R_{\rm l}}$$

non-inverting

$$V_{\text{out}} = -R_{\text{f}} \left(\frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3} \right)$$

summing

$$V_{\text{out}} = (V_+ - V_-) \frac{R_f}{R_1}$$

difference

555 Astable and Monstable

$$T = 1.1RC$$

monostable

$$t_{\rm H} = 0.7 (R_{\rm A} + R_{\rm B})C$$

 $t_{\rm L} = 0.7 R_{\rm B}C$

astable

$$f = \frac{1.44}{(R_A + 2R_B)C}$$

astable frequency

Electromagnetic waves $c = 3 \times 10^8 \text{ m s}^{-1}$

$$c = 3 \times 10^8 \text{ m s}^{-1}$$

speed in vacuo

Assembler language microcontroller instructions

Mnemonic	Operands	Description Operation		Flags	Clock cycles
NOP	none	No operation	none	none	1
CALL	K	Call subrountine	stack <=PC PC <=K	none	2
RET	none	Return from subrountine	PC <= stack	none	2
INC	R	Increments the contents of R	$(R) \le (R) + 1$	Z	1
DEC	R	Decrements the contents of R	$(R) \le (R) - 1$	Z	1
ADDW	K	Add K to W	$W \leq W + K$	Z, C	1
ANDW	K	AND K with W	W <= W • K	Z, C	1
SUBW	K	Subtract K from W	$W \leq W - K$	Z, C	1
ORW	K	OR K and W	$W \leq W + K$	Z, C	1
XORW	K	XOR K and W	$W \leq W \oplus K$	Z, C	1
	•				
JMP	K	Jump to K (GOTO)	PC <= K	none	2
JPZ	K	Jump to K on zero	PC <= K if Z=0	Z=0	2
JPC	K	Jump to K on carry	PC <= K if C=0	C=1	2
MOVWR	R	Move W to the contents of R	(R) <= W	Z	1
MOVW	K	Move K to W	W <= K	Z	1
MOVRW	R	Move the contents of R to W	W <= (R)	Z	1