Surname					Other	Names			
Centre Number						Cand	idate Number		
Candidate Signature									

For Examiner's Use

General Certificate of Education June 2008 Advanced Subsidiary Examination

ELECTRONICS Unit 2 Further Electronics

ELE2

Friday 16 May 2008 9.00 am to 10.30 am

For this paper you must have:

- a pencil and a ruler
- a calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Use pencil only for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Answers written in margins or on blank pages will not be marked.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- A *Data Sheet* is provided on pages 3 and 4. Detach this perforated sheet at the start of the examination.

Information

- The maximum mark for this paper is 72.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- Any correct electronic solution will gain credit.
- You are reminded of the need for good English and clear presentation in your answers.

For Examiner's Use				
Question	Mark	Question	Mark	
1		5		
2		6		
3		7		
4				
Total (Column 1)				
Total (Column 2)				
TOTAL				
Examiner's Initials				

Data Sheet

- A perforated *Data Sheet* is provided as pages 3 and 4 of this question paper.
- This sheet may be useful for answering some of the questions in the examination.
- You may wish to detach this sheet before you begin work.

Data Sheet

Resistors Preferred values for resistors (E24) series:

1.0, 1.1, 1.2, 1.3, 1.5, 1.6, 1.8, 2.0, 2.2, 2.4, 2.7, 3.0, 3.3, 3.6, 3.9, 4.3, 4.7, 5.1, 5.6, 6.2, 6.8, 7.5, 8.2, 9.1 ohms and multiples that are ten

times greater.

Resistor Printed Code This code consists of letters and numbers:

> R means $\times 1$ (BS 1852)

K means $\times 1000$ (i.e. 10^3) M means $\times 1\ 000\ 000\ (i.e.\ 10^6)$

Position of the letter gives the decimal point

Tolerances are given by the letter at the end of the code, $F = \pm 1\%$,

 $G = \pm 2\%$, $J = \pm 5\%$, $K = \pm 10\%$, $M = \pm 20\%$.

Resistor Colour Code Number Colour

Tolerance, gold = \pm 5%, silver = \pm 10%, no band \pm 20%.

Silicon diode $V_{\rm F} = 0.7 \, {\rm V}$

 $V_{\rm be} \approx 0.7 \, \rm V$ in the on state $V_{\rm ce} \approx 0.2 \, \rm V$ when saturated Silicon transistor

Resistance $R_T = R_1 + R_2 + R_3$ series

> $\frac{1}{R_{\rm T}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$ parallel

Capacitance $\frac{1}{C_{\rm T}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}$ series

> $C_{\rm T} = C_1 + C_2 + C_3$ parallel

Time constant T = CR

A.C. theory $I_{\rm rms} = \frac{I_0}{\sqrt{2}}$

 $V_{\rm rms} = \frac{V_{\rm o}}{\sqrt{2}}$

 $X_{\rm C} = \frac{1}{2\pi fC}$ reactance

 $X_{\rm L} = 2\pi f L$ reactance

 $f = \frac{1}{T}$ frequency, period

 $f_{\rm o} = \frac{1}{2\pi\sqrt{LC}}$ resonant frequency

Operational amplifier
$$G_{
m V} = rac{V_{
m out}}{V_{
m in}}$$

voltage gain

$$G_{\rm V} = -\frac{R_{\rm f}}{R_{\rm 1}}$$

inverting

$$G_{\rm V} = 1 + \frac{R_{\rm f}}{R_{\rm 1}}$$

non-inverting

$$V_{\text{out}} = -R_{\text{f}} \left(\frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3} \right)$$

Astable and Monostable using NAND Gates $f \approx \frac{1}{2RC}$

$$f \approx \frac{1}{2RC}$$

astable

summing

 $T \approx RC$

monostable

555 Astable and Monostable

$$T = 1.1RC$$

monostable

$$t_{\rm H} = 0.7(R_{\rm A} + R_{\rm B})C$$

 $t_{\rm L} = 0.7R_{\rm B}C$

astable

$$f = \frac{1.44}{(R_{\rm A} + 2R_{\rm B})C}$$

two resistor circuit

Electromagnetic Waves $c = 3 \times 10^8 \text{ m s}^{-1}$

$$c = 3 \times 10^8 \,\mathrm{m\,s}^{-3}$$

speed in vacuo

List of BASIC Commands DIM variable [(subscripts)]

DO [{WHILE | UNTIL} condition]

[statement block]

DO

[statement block]

LOOP [{WHILE | UNTIL} condition]

FOR counter = start **TO** end [**STEP** increment]

[statement block]

NEXT counter

GOSUB [label | line number]

[statement block]

RETURN

IF condition THEN

[statement block 1]

[statement block 2]

INKEY\$

INP (port %)

INPUT [;] ["prompt" {;1, }] variable list (comma separated)

LPRINT [expression list] [{ ;1, }]

OUT port%, data%

PRINT [expression list] [{;1,}]

REM remark

Answer all questions in the spaces provided.

1 Temporary traffic lights are used to control the traffic at roadworks. The traffic lights have a 16-step binary sequence as shown in the table below where R = red, Y = amber, G = green.

D	C	В	A	traffic lights 1	traffic lights 2
0	0	0	0	R	G
0	0	0	1	R	G
0	0	1	0	R	G
0	0	1	1	R	G
0	1	0	0	R	G
0	1	0	1	R	G
0	1	1	0	R	Y
0	1	1	1	R, Y	R
1	0	0	0	G	R
1	0	0	1	G	R
1	0	1	0	G	R
1	0	1	1	G	R
1	1	0	0	G	R
1	1	0	1	G	R
1	1	1	0	Y	R
1	1	1	1	R	R, Y

1	(a)	State the value of the step, in hexadecimal, when only the amber lamp traffic lights 1.	s illuminated in
			(1 mark)

Question 1 continues on the next page

1	(b)	Explain why the Boolean expression when the green lamp of traffic lights 1 is illuminated is given by
		$G = D \cdot \overline{C} \cdot \overline{B} \cdot \overline{A} + D \cdot \overline{C} \cdot \overline{B} \cdot A + D \cdot \overline{C} \cdot B \cdot \overline{A} + D \cdot \overline{C} \cdot B \cdot A + D \cdot C \cdot \overline{B} \cdot \overline{A} + D \cdot C \cdot \overline{B} \cdot A$
		(2 marks)
1	(c)	Show that the expression in part (b) simplifies to:
	()	$\mathbf{G} = \mathbf{D} \cdot \overline{\mathbf{B} \cdot \mathbf{C}}$
		(3 marks)
		(3 marks)

1	(d)	Draw a circuit diagram to show how you would implement the simplified logic expression using several 2-input NAND gates.
		(3 marks)
		Turn over for the next question

An ionisation chamber for detecting radioactivity consists of a metal gauze cylinder surrounding a central electrode. The metal gauze is held at a voltage of $+50\,\mathrm{V}$ with respect to the central electrode. When radiation enters the chamber the gas is ionised and a very small current flows which is directly related to the strength of the radiation. This small current passes through a $10\,\mathrm{M}\Omega$ resistor.

2	(a)	(i)	The maximum current that the detector can produce is 2×10^{-10} A. Calculate the corresponding voltage across the $10 \mathrm{M}\Omega$ resistor.
2	(a)	(ii)	The voltage is to be displayed on a digital meter which has a maximum sensitivity of 200 mV. Calculate the voltage gain required for an amplifier to interface the digital meter to the ionisation chamber.
			(4 marks)
2	(b)		decided to use a non-inverting op-amp amplifier to provide this gain. State and ain what important property makes a non-inverting amplifier a suitable choice.
		•••••	
			(2 marks)

The partly drawn circuit diagram for a non-inverting amplifier is shown below.

- 2 (c) (i) Complete the circuit diagram by adding the missing connection.
- 2 (c) (ii) Calculate the value of R needed to produce the voltage gain you have calculated in part (a)(ii).

Turn over for the next question

9

Turn over ▶

(3 marks)

3 Part of the circuit diagram for a low power radio transmitter is shown below.

The audio amplifier controls the current through the radio transmitter module.

3 (a)	(i)	Label the	source connection	n of the	MOSFET	with an	S
-----	----	-----	-----------	-------------------	----------	---------------	---------	---

3	(a)	(ii)	What is the name for the circuit arrangement in which the MOSFET is being used?

(2	? marks)

3	(b)	(i)	Show that the voltage at the non-inverting input of the op-amp is 8 V.

3	(b)	(ii)	With no input signal from the microphone, explain why the voltage on the gate of the MOSFET is also 8 V.

3	(b)	(iii)	If the turn on value of $V_{\rm gs}$ for the MOSFET is 2V, what is the voltage across the radio transmitter module, when there is no signal from the microphone?
			(1 monto)

(4 marks)

3	(c)	(i)	Calculate the voltage gain of the op-amp amplifier.
3	(c)	(ii)	If the microphone gives an output of 40 mV, estimate the voltage change that occurs across the radio transmitter module, showing your working.
			(3 marks)

Turn over for the next question

9

4 A student wants to amplify the output from the sound card on his computer so that he can use loudspeakers instead of headphones. His sound card gives a maximum peak output voltage of 500 mV. He wants to use an amplifier circuit that he has found on a website, but needs to decide if it will be suitable. The circuit diagram is shown below.

4	(a)		w that the peak voltage developed across the loudspeaker will be approximately when there is an input of 500 mV.	imately
4	(b)	Calc	culate the rms output power into the loudspeaker under these conditions.	(2 marks)
	The	 	nt is concerned that the amplifier will suffer from <i>cross-over distortion</i> .	(2 marks)
4	(c)	(i)	Explain what is meant by cross-over distortion.	

4	(c)	(ii) State what measures have been taken to reduce cross-over distortion in the circuit.	
		(3 mar.	 ks)
4	(d)	With the circuit constructed and working, the student finds that the MOSFETs become very hot. His teacher recommends that he should bolt each MOSFET to a heatsink.	ne
		State two important features of an efficient heatsink.	
			••••
		(2 mar.	 ks)

Turn over for the next question

5	the h	ighest of the	electrical activity of the brain occurs at low frequencies, the alpha rhythmet frequency of $8-13\mathrm{Hz}$. In order to isolate this electrical activity from muscles, which occurs at a higher frequency, the electrical signals are pass low pass filter with a break point frequency of $20\mathrm{Hz}$.	
5	(a)	(i)	What is meant by the term low pass filter?	
5	(a)	(ii)	What is meant by the term break point frequency?	
				(3 marks)
5	(b)	The	circuit diagram of the low pass filter is shown below.	
		Calc	$V_{in} \circ \frac{10 k\Omega}{V_{out}} \circ V_{out}$ evaluate the reactance of the 100 nF capacitor at a frequency of 20 Hz.	
				(3 marks)

Sketch onto the grid below how the voltage gain of this filter circuit varies with 5 frequency.

voltage gain

(3 marks)

9

Turn over for the next question

6 The shift register circuit below is used by a student to convert parallel data to serial data. The parallel data is sent to P_0 , P_1 , P_2 and P_3 and the serial output is taken from Q_3 .

6	(a)	Expl	ain how a shift register works.
		•••••	(3 marks)
6	(b)	(i)	Explain why it is necessary in this circuit to reset the shift register before loading new parallel data.
6	(b)	(ii)	State the logic level of the load input for parallel data to be loaded into the shift register.
			(2 marks)

 $\bf 6$ (c) The hexadecimal number $\bf B$ is loaded into the shift register. Sketch onto the diagram below the serial output.

(4 marks)

9

Turn over for the next question

7 A metronome is a device used by musicians to help keep in time. It produces a click to time the beat of the music. The system diagram of a simple metronome is shown below.

The circuit diagram for the astable is shown below.

7	(a)	(i)	The metronome produces a maximum rate of 240 clicks per minute. required frequency of the astable?	What is the
7	(a)	(ii)	Calculate a suitable value for R using the formula on the Data Sheet.	
				(3 marks)
7	(b)		e minimum number of clicks per minute is 30, calculate a suitable valued control variable resistor.	e for the
		•••••		(2 marks)

The circuit diagram for the monostable is shown below.

7	(c)	(i)	Calculate the time period of the pulse from the monostable using the formula on the Data Sheet.
7	(c)	(ii)	Explain how the monostable circuit operates once it has been triggered.
			(6 marks)

Question 7 continues on the next page

Having built the metronome, a student decides to modify it so that it flashes a LED every two, three or four clicks. He decides to build a 2-bit counter using D-type flip-flops. The diagram below shows two D-type flip-flops and the LED flashing circuit.

- 7 (d) (i) Add the connections necessary to make the two flip-flops into a 2-bit up-counter and show where the output from the monostable would be connected in order to make them count.
- 7 (e) In order to make the LED flash every two, three or four clicks, it is necessary to design a logic circuit to control the reset terminals, R, of the flip-flops. Complete the table below for the logic states that must be applied to each of the reset pins. Choose from 0, 1 or $Q_A \cdot Q_B$

No of clicks	$\mathbf{R}_{\mathbf{A}}$	R_{B}
2	0	1
3		
4		

(3 marks)

18

END OF QUESTIONS

Copyright © 2008 AQA and its licensors. All rights reserved.

