

General Certificate of Education

Electronics 5431/6431

ELE2 Further Electronics

Mark Scheme

2007 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

1
(a) \mathbf{D} to $\overline{\mathbf{Q}}$
$\overline{\mathbf{Q}}$ to next clock
C to AND gate input
D to AND gate input
AND output connected to all resets
(max 4 marks)
(b) (i) Each term represents one line within the truth table for which the output is 1
Each letter within each term represents the logic state of the counter outputs
(ii) Correct use of either Karnaugh Map of Boolean algebra At least one piece of simplification
Simplification to $\overline{\mathbf{D}} . \mathbf{C} . A+$ D. $\overline{\mathbf{C}} . \mathbf{B}$
(5 marks)
(Total 9 marks)

2 (a) Voltage divider gives 6V at non-inverting input of op-amp \checkmark
So inverting input will also be approx 6 V for non saturated output of op-amp because of large open loop voltage gain of op-amp
(b) Correct formula $\mathrm{G}_{v}=-\mathrm{R}_{2} / \mathrm{R}_{1} \checkmark$
$\mathrm{G}_{\mathrm{v}}=-2200 / 10=-220$
(c) $\quad G_{v}=3 / 220=13.6 \mathrm{mV}$
(d) e.g. variable resistor
to replace R_{2} (or R_{1})
(2 marks)
(e) $\quad X_{c}=1 /(2 \pi f C)=>C=1 / 2 \pi f X_{c}=1 / 2 \pi 2010^{4}=0.796 \mu F \quad \checkmark$

3 (a) logic 1
The input to the NAND gate must be logic 1 for the output to be anything other than logic $0 \checkmark$
(b) Output of first NAND gate goes low, output of astable goes high

Capacitor discharges and charges in opposite direction
Until voltage at input to first NAND gate (<) $+\mathrm{V}_{\mathrm{S}} / 2 \checkmark$
Output of astable switches state
Capacitor charges in opposite direction
Process repeats as long as motion sensor is at logic $1 \checkmark$
(max 4 marks)
(c) $\mathrm{f} \approx 1 / 2 \mathrm{RC}=>22 \times 10^{3} \approx 1 / 2 \times 15 \times 10^{3} \times \mathrm{C}=>\mathrm{C}=1.52 \mathrm{nF}$
(d) The NOT gates are driven by opposite sides of NAND gate 2, which is configured as a NOT gate. Therefore when A is logic $1, B$ is logic 0 etc \checkmark
(Total 9 marks)

4 (a) very large open loop voltage gain
so there must only be a very small difference in inputs if output is not to be saturated
(b) If 200 mA passes through battery it must also pass through $\mathrm{R} \checkmark$ $\mathrm{R}=\mathrm{V} / \mathrm{l}=>\mathrm{R}=5 / 0.2=25 \Omega$
(c) (i) source follower (or equivalent)
(ii) The op-amp will not supply such a large current
(d) As the battery voltage rises, the output of the op-amp will also rise
so as to ensure that there is 200 mA passing through the battery and $R \quad \checkmark$
and so maintaining the 5 V across R and hence 5 V at its own input terminals

5 (a) correctly connected inputs,
feedback resistor in correct place,
realistic values of R - accept between $1 \mathrm{k} \Omega$ and $1 \mathrm{M} \Omega$, \checkmark both Rs the same.

(4 marks)
(b) (i) Any appropriate place associated with inverting input of op-amp \downarrow (Accept if not $\mathrm{X}!$)
(ii) Appropriate calculation leading to answer
e.g. $-10^{6}\left(\frac{\mathrm{v}}{10^{4}}+\frac{\mathrm{v}}{10^{4}}\right)$

Output voltage $=(+) 200 v \checkmark$
(c) (i) Calculation leading to answer of 1.99 kg
(ii) Resolution of meter is 0.01 V
=> smallest change in weight is 0.01 kg or 10 g

6 (a) (i) CKs all connected together,
Resets all connected together,
D to proceeding Q \checkmark Input to D_{A}
(ii) switch to $+\mathrm{V}_{\mathrm{s}}$,
pull down resistor to OV
(6 marks)
(b) 12 => 1100 => C => appropriate symbol for C \checkmark

13 => 1101 => D => appropriate symbol for d \checkmark
15 => 1111 => F => appropriate symbol for F \checkmark
OR
(3 marks)
(Total 9 marks)

7
(a) (i) $\mathrm{G}_{\mathrm{v}}=\mathrm{V}_{\text {out }} / \mathrm{V}_{\text {in }}=15 / 0.075=200$
(ii) $6 \times 10^{5}=f \times G_{v}=f \times 200$
$=>f=6 \times 10^{5} / 200=3000 \mathrm{~Hz} \checkmark$
(b) (i) $1 \mathrm{M} \Omega \checkmark$

Assuming input impedance of capacitor is negligible (or input impedance of op-amp is very large)
(ii) Assume source followers have a voltage gain of 1

$$
\begin{aligned}
& \mathrm{G}_{\mathrm{v}}=1+\mathrm{R}_{\mathrm{f}} / \mathrm{R}_{1} \checkmark \\
& 200=1+\mathrm{R}_{\mathrm{f}} / 10^{4} \checkmark \\
& \mathrm{R}_{\mathrm{f}}=1.99 \times 10^{6} \text { (allow } 2 \mathrm{M} \Omega \text {) }
\end{aligned}
$$

(c) (i) X -over distortion is non-linearity in the characteristic of the amplifier when the signal changes from positive to negative or vice versa
(ii) No - because the MOSFETs are biased into conduction (mention of 50 mA drain current) (because of the negative feedback loop)
(d) (i) $\quad P_{\text {out }}=V_{s}^{2} / 2 \times R=15^{2} / 8$
$=28.125 \mathrm{~W} \checkmark$
(ii) Output of op-amp does not reach saturation at the supply voltages
MOSFETs have V_{gs} when conducting \checkmark
(e) Dark colour (to aid radiation)

Large surface area (to aid radiation and convection)
Made of metal (to aid conduction)
(fan (to assist convection) \checkmark)

