

GCE

Electronics

Unit ELE4

Copyright ${ }^{\circledR} 2003$ AQA and its licensors. All rights reserved.

ELE4 - Electronic Control Systems

1

2
(a) (i) $\quad a, b, c, d, g \checkmark$
(ii) $\mathrm{D}_{0}, \mathrm{D}_{1}, \mathrm{D}_{2}, \mathrm{D}_{3}$ and $\mathrm{D}_{6} \checkmark$ i.e. $01001111\left(\text { or } 79_{10}\right)^{\checkmark}$ giving 4F \checkmark
(b) (i) $60 \mathrm{~mA} \checkmark$
(ii) 5 LEDs $=>5 \times 1.9=9.5 \mathrm{~V} \checkmark$
voltage across R approx. $\mathbf{1 5 - 9 . 5}=\mathbf{5 . 5 V} \checkmark$
$\Rightarrow \mathbf{R}=5.5 / 0.06=91.7 \Omega \checkmark$
(iii) \quad Power $=V \times I=5.5 \times 0.06 \checkmark$
$\Rightarrow>$ Power $=0.33 \mathrm{~W} \quad($ accept 0.5 or 1 W$) \checkmark$
max (2 marks)
(2 marks)
(Total 9)
(a) (i) Digital to Analogue Conversion \checkmark
(ii) $12.75 \mathrm{~V} / 255 \checkmark$
$\Rightarrow>$ change in output for a change of 1 in the input is $0.05 \mathrm{~V}(50 \mathrm{mV}) \checkmark$
(2 marks)
(iii)

(b) (i) \quad start: is a label \checkmark
(ii) sends the integer variable $\mathbf{N} \%$ to the output port 378_{16}
(2 marks)
(1 mark)
(1 mark)
(c) Enter a number greater than 255 or less than $0 \checkmark \checkmark$
(a) (i)

(1 mark)
(ii) whatever value is put on D is transferred to $\mathrm{Q} \checkmark$ only on the rising edge of the clock pulse \checkmark
(b) (i) three possible output states \checkmark

0 , 1, high impedance \checkmark
(2 marks)
(ii) to isolate the outputs from the two 4 bit latches \checkmark
(1 mark)
(c) (i) Neural networks have lots of very basic processors whereas a PC has a few complex processors \checkmark data is stored through a neural network, whereas a PC stores it centrally \checkmark
(ii) justified reason e.g. No, because ANNs only predictive and are not able to do accurate measurements
(1 mark)
(Total 9)

5 (a)
(a) (i) Whole system built in a single IC \checkmark

PICs have separate instruction bus \checkmark
(appropriate and sensible response)
(ii) Sensible answer e.g. cheap and very versatile \checkmark
(b) Closed loop when system monitors the output and uses state of output to control the input (feedback) \checkmark eg.
Filling with water requires the amount of water to be monitored and stopped at the required amount - could not do by time because of variation in water pressure \checkmark
Heating could not be done by time because of variation in input water temp \checkmark
(c) (i) Negative feedback is where information from the output is used to adjust the input so that the output remains steady \checkmark
(ii) If the speed is too fast the input drive to the motor will be reduced and vice versa if the speed is too slow
(i) thermistor \checkmark
(ii) thermistor is part of a voltage divider circuit which produces a voltage dependent upon the temperature of the thermistor. The op-amp compares this voltage with that from the PIC/AVR and produces a low output when the voltage from the voltage divider exceeds that from the PIC/AVR \checkmark
(a) To clean up the pulses,(restoring the logic levels and sharp rise and fall times) \checkmark
(b) (i) When the output is at 0 V , the voltage divider connected to point A consists of a $47 \mathrm{k} \Omega$ resistor at the top and two $47 \mathrm{k} \Omega$ resistors in parallel at the bottom \checkmark
Combined resistance at bottom is $23.5 \mathrm{k} \Omega \checkmark$
Voltage divided into ratio of $2: 1 \Rightarrow>$ voltage at point $A=4 V \checkmark$
(ii) When output is 12 V , there are two $47 \mathrm{k} \Omega$ resistors at the top of the voltage divider and one $47 \mathrm{k} \Omega$ resistor at the bottom \checkmark
Combined resistance at top is $23.5 \mathrm{k} \Omega \checkmark$
Voltage divided into ratio of 1:2 $\Rightarrow>$ voltage at point $A=8 \mathrm{~V} \checkmark$
(iii) Op-amp has a very large open loop voltage gain so acts as a comparator \checkmark When the input rises above 8 V , the inverting input to the op-amp is greater than the non-inverting input, so the output goes to $0 \mathrm{~V} \checkmark$ Similarly when the input voltage goes below 4 V when the output is at $12 \mathrm{~V} \checkmark$

7 (a) MOSFET or transistor with coils in drain/collector circuit. Input to gate or base (with series resistor) \checkmark Protection diode for MOSFET/transistor correctly placed \checkmark
(b) (i) A 4 pole stepper motor rotates 7.5° as each successive coil is energised, so with four coils energised in sequence it rotates $30^{\circ} \checkmark$
(ii) Reverse the sequence \checkmark so that D_{3} is energised first, then D_{2}, then D_{1} then finally $D_{0} \checkmark$
(iii) Alter the value of the pause
(c) (i) OUT(\&H378), is command to write what follows to the parallel port and 4 corresponds to making the bit D_{2} logic 1
(ii) OUT(\&H378), $\mathbf{1}$

GOSUB waitabit
OUT(\&H378), 2
GOSUB waitabit
OUT(\&H378), 4
GOSUB waitabit
OUT(\&H378), 8
STOP
(4 marks)
(d) (i) Polled is when the computer monitors a port by regularly reading its value \checkmark
(ii) Interrupt; the computer performs other operations until an external device generates a signal, upon which the computer will stop what it is doing and service the interrupting device. It does not therefore need to continuously monitor the device unlike with polling.
(iii) Make the motor rotate one step at a time

Read in the value of port (\&H379) and examine bit $5 \checkmark$
Repeat this until bit 5 is high, tube A is then aligned with the pipe \checkmark
(3 marks)
(e) It would be very difficult to make a conventional motor accurately rotate $30^{\circ} \checkmark$

