

GCE

Electronics

Unit ELE2

Copyright ${ }^{\circledR} 2003$ AQA and its licensors. All rights reserved.

ELE2 - Further Electronics

1

2
(a) Summing amplifier or mixer
(b) Output of circuit needs to be amplified by 5

Calculation or reasoned deduction of feedback resistor changes
R_{f} changed to $500 \mathrm{k} \Omega \checkmark$
\{gain of circuit needs to be increased \checkmark \}
$\{$ increase value of feedback resistor $\sqrt{ }$ \}
(3 marks)
(c) (i) Resistor \checkmark
connected to inverting input terminal
(2 marks)
(ii) Guitar needs to be amplified four times more than other inputs Calculation or reasoned deduction of feedback resistor changes Resistor value of $25 \mathrm{k} \Omega \checkmark$
(a) Binary value $=$ 1111. Decimal value is $15 \checkmark$ Hex value is F (2 marks)
(b) The three terms for the heater to be on

ORed together
to give expression $\mathbf{Q}=\mathbf{D} \overline{\mathbf{C}} \mathbf{B} \overline{\mathbf{A}}+\overline{\mathbf{D}} \mathbf{C} \overline{\mathbf{B}} \mathbf{A}+\overline{\mathbf{D} \mathbf{C}} \overline{\mathbf{B}} \mathbf{A}$
$\mathbf{Q}=\overline{\mathbf{D}} \overline{\mathbf{B}} \mathbf{A}+\mathbf{D} \overline{\mathbf{C}} \mathbf{B} \overline{\mathbf{A}} \checkmark \checkmark$
(3 marks)
(c) Two steps of simplification to give $\quad \mathbf{Q}=\overline{\mathbf{D}} \overline{\mathbf{B}} \mathbf{A}+\mathbf{D} \overline{\mathbf{C}} \mathbf{B} \overline{\mathbf{A}}$
(a) \quad Voltage gain $=$ Vout $/$ Vin $=2 / 0.02=100$
$\{20 \mathrm{mV} \times 100=2 \mathrm{~V} \sqrt{ }\}$
(b) (i) $\quad \mathrm{P}$ at inverting input
(ii) $\mathrm{Gv}=-\mathrm{Rf} / \mathrm{R} 1=-100 \Rightarrow \mathrm{R}=100 \times 10000$
$\Rightarrow R=1 M \Omega \checkmark$
(iii) $10 \mathrm{k} \Omega$
(1 mark)
(c) Hydrophone has a large output resistance

Amplifier has a low input resistance
Input to amplifier only approximately $20 \times 10000 / 1010000=0.2 \mathrm{mV}$
Hydrophone internal resistance contributes to input resistance of inverting amp So giving unity gain
(d) Input to + input \checkmark
resistor from - input to $0 \mathrm{~V} \checkmark$
feedback resistor $1 \mathrm{M} \Omega$ and $\mathrm{R}_{1}=10 \mathrm{k} \Omega$ (or appropriate values)
$\left\{\mathrm{R}_{\mathrm{f}}\right.$ must be greater than $\left.10 \mathrm{k} \Omega\right\}$
(e) Very high input resistance
(a) Push switch pressed, input to first NAND gate goes high

Output of first NAND gate goes low, output of astable goes high \checkmark
Capacitor discharges and charges in opposite direction \checkmark
Until voltage at input to first NAND gate $<+\mathrm{V}_{\mathrm{S}} / 2$
Output of astable switches state \checkmark
Capacitor charges in opposite direction \checkmark
Process repeats as long as switch pressed
max (5 marks)
(b) $\quad f=\frac{1}{2 R C}=\frac{1}{2 \times 10^{4} \times 10^{-7}}=500 \mathrm{~Hz} \checkmark \checkmark$
(c) (i) On the rising edge of each clock pulse \checkmark the output of the D-type flip-flop changes state
(ii) They flash \{alternately so fast that they appear to be continuously lit\}
(a) $\mathrm{X}_{\mathrm{C}}=1 / 2 \times \pi \times 200 \times 15 \times 10^{-9}$
$\mathrm{X}_{\mathrm{c}}=53 \mathrm{k} \Omega$
(2 marks)
(b) Use of non-inverting amplifier formula \checkmark

If effect of capacitors ignored gain $=58 \checkmark$
If effect of capacitors taken into account \checkmark
Gain around 30
(c)

One mark for low freq., one for mid range, one for high freq.
Graph should agree with calculated values for three marks
(a) Falling edge of clock pulse \checkmark
$\{$ when its output is low $\boldsymbol{\checkmark}$ \}
(1 mark)
(b) (i) Negative going pulse makes output of gate A go high, This makes input of gate B high, and output low, \checkmark
Capacitor charges through thermistor,
Until voltage at input of gate B is below half of the supply voltage, Output of gate B goes high, output of gate 3 low Monostable resets. max (5 marks)
(c) (i) $\mathrm{T}=\mathrm{CR}=10^{-8} \times 180 \times 10^{3} \checkmark=1.8 \mathrm{~ms}$
(1 mark)
(ii) $\mathrm{T}=\mathrm{CR}=10^{-8} \times 10^{4}=0.1 \mathrm{~ms}$
(d) The astable triggers the monostable every 2 ms and so when cold the monostable provides an almost continuous output to the driver so keeping the heater switched on.
When the thermistor warms up the output from the monostable is shorter and so the heater is on for less time in every 2 ms .
A temperature will be reached where the length of time that the heater is switched on is just sufficient to maintain the temperature of the thermistor
(a) Volume control
\{allows adjustment of the effect of the input $\sqrt{ }$ \}
(b) (i) assumption e.g. MOSFETs need V_{gs} of $2 \mathrm{~V} \checkmark$ $11-15 \mathrm{~V}$ (2 marks)
(ii) Voltage gain of source follower is 1 Inverting amp - gain of -15
(c) (i) Cross-over distortion \checkmark
(ii) Bias the MOSFETs into conduction by applying permanent bias voltage to gate \checkmark
Use negative feedback by incorporating output devices into op-amp feedback loop
(iii) Only a noise/sound is needed
(d)
(i) $\quad \mathrm{W}=\mathrm{I}^{2} \times \mathrm{R}=2.3^{2} \times 4=21 \mathrm{~W} \checkmark \checkmark$
(ii) \{Difference between input power and output $\}$ power is dissipated as heat in MOSFETs
Heatsinks prevent MOSFETs from being destroyed by getting too hot
(e) Metal - good conduction of heat away from MOSFETs \checkmark

Large surface area - good convection and radiation of heat from MOSFETs
Matt black - good radiation of heat from MOSFETs
Good thermal contact with MOSFETs
Fan to improve air circulation

