

A S S E S S M E N T and Q U A L I F I C A T I O N S A L L I A N C E

Mark scheme June 2003

GCE

Electronics

Unit ELE2

Copyright $^{\odot}$ 2003 AQA and its licensors. All rights reserved.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334 Registered address: Addleshaw Booth & Co., Sovereign House, PO Box 8, Sovereign Street, Leeds LS1 1HQ Kathleen Tattersall: Director General

ELE2 – Further Electronics

1	(a)	Summing amplifier or mixer \checkmark	(1
	(b)	Output of circuit needs to be amplified by $5 \checkmark$ Calculation or reasoned deduction of feedback resistor changes \checkmark R_f changed to $500k\Omega \checkmark$ {gain of circuit needs to be increased \checkmark }	(Tillark)
	(c)	 (i) Resistor ✓ (i) Resistor ✓ (ii) Guitar needs to be amplified four times more than other inputs ✓ (iii) Guitar needs to be amplified four times more than other inputs ✓ Calculation or reasoned deduction of feedback resistor changes ✓ Resistor value of 25kΩ ✓ 	(3 marks) (2 marks) (3 marks)
2	(a)	Binary value = 1111. Decimal value is $15 \checkmark$ Hex value is F \checkmark The three terms for the heater to be on \checkmark	(1 otal 9) (2 marks)
	(c)	ORed together \checkmark to give expression $\mathbf{Q} = \mathbf{D}\overline{\mathbf{C}}\mathbf{B}\overline{\mathbf{A}} + \overline{\mathbf{D}}\overline{\mathbf{C}}\overline{\mathbf{B}}\mathbf{A} + \overline{\mathbf{D}}\overline{\mathbf{C}}\overline{\mathbf{B}}\overline{\mathbf{A}} \checkmark$ Two steps of simplification to give $\mathbf{Q} = \overline{\mathbf{D}}\overline{\mathbf{B}}\mathbf{A} + \mathbf{D}\overline{\mathbf{C}}\overline{\mathbf{B}}\overline{\mathbf{A}} \checkmark \checkmark$	(3 marks) (2 marks) (Total 7)
3	(a)	Voltage gain = Vout / Vin = 2 / $0.02 = 100 \checkmark$ { $20mV \ge 100 = 2V \checkmark$ }	
	(b)	(i) P at inverting input \checkmark (ii) $Gv = -Rf/R1 = -100 \implies R = 100 \ge 10000 \checkmark$ $\implies R = 1M\Omega \checkmark$	(1 mark) (1 mark)
	(c)	(iii) $10k\Omega \checkmark$ Hydrophone has a large output resistance \checkmark Amplifier has a low input resistance \checkmark Input to amplifier only approximately $20 \ge 10000 / 1010000 = 0.2 \text{mV} \checkmark$ Hydrophone internal resistance contributes to input resistance of inverting a So giving unity gain \checkmark	(2 marks) (1 mark) ump ✓

max (2 marks)

	(d)	Input to $+$ input \checkmark
		resistor from – input to 0V \checkmark
		feedback resistor 1M Ω and R ₁ = 10k Ω (or appropriate values) \checkmark
		$\{R_{f} \text{ must be greater than } 10k\Omega\}$
		(3 marks)
	(e)	Very high input resistance \checkmark (1 mark)
		(Total 11)
4	(a)	Push switch pressed, input to first NAND gate goes high \checkmark
		Output of first NAND gate goes low, output of astable goes high \checkmark
		Capacitor discharges and charges in opposite direction \checkmark
		Until voltage at input to first NAND gate $<+V_s/2$ 🗸
		Output of astable switches state \checkmark
		Capacitor charges in opposite direction \checkmark
		Process repeats as long as switch pressed \checkmark
		max (5 marks)
	(b)	$f = \frac{1}{1} = \frac{1}{1} = 500 \text{Hz} \sqrt{1}$
	(0)	$2RC 2 \times 10^4 \times 10^{-7}$
		(2 marks)
	(c)	(i) On the rising edge of each clock pulse \checkmark
		the output of the D-type flip-flop changes state \checkmark
		(2 marks)
		(ii) They flash {alternately so fast that they appear to be continuously lit} \checkmark
		(1 mark) (Total 10)
		(100010)
5	(\mathbf{a})	$V = 1/2 \times \pi \times 200 \times 15 \times 10^{-9} \checkmark$
3	(a)	$X_{c} = \frac{1}{2} \frac{1}{x} \frac{1}{x} \frac{1}{x} \frac{1}{2} \frac{1}{x} \frac{1}{10} \frac{1}{x} \frac{1}{10} \frac{1}{x}$
		$A_c = 55K22$ (2 marks)
	(b)	Use of non-inverting amplifier formula \checkmark
	(-)	If effect of capacitors ignored gain =58 \checkmark
		If effect of capacitors taken into account \checkmark
		Gain around $30 \checkmark$

max (5 marks)

(a)	Volur	ne control \checkmark	
	{allov	vs adjustment of the effect of the input \checkmark }	
		(1 mark)
(b)	(1)	assumption e.g. MOSFETs need V_{gs} of 2V \checkmark	
		$11 - 15V \checkmark$)
	(ii)	Voltage gain of source follower is $1 \checkmark$,
	(11)	Inverting amp - gain of -15 \checkmark	
		(2 marks)
(c)	(i)	Cross-over distortion \checkmark	
		(1 mark)
	(ii)	Bias the MOSFETs into conduction \checkmark	
		by applying permanent bias voltage to gate \checkmark	
		Use negative feedback 🗸	
		by incorporating output devices into op-amp feedback loop \checkmark	
		(4 marks)
	(iii)	Only a noise/sound is needed ✓	•
(d)	(i)	$W = I^2 \times R = 2.3^2 \times A = 21W \checkmark \checkmark$)
(u)	(1)	(2 marks)
	(ii)	{Difference between input power and output} power is dissipated	<i>.</i>
		as heat in MOSFETs 🗸	
		Heatsinks prevent MOSFETs from being destroyed by getting too hot \checkmark	
		(2 marks)
(e)	Metal	- good conduction of heat away from MOSFETs ✓	
	Large	surface area - good convection and radiation of heat from MOSFETs ✓	
	Matt	black - good radiation of heat from MOSFETs ✓	
	Good	thermal contact with MOSFETs ✓	
	Fan to	\bullet improve air circulation \checkmark	`
		max (3 marks) (Tetal 19)
		(1000110)

7

(Paper Total 72 marks)