MARK SCHEME for the October/November 2009 question paper for the guidance of teachers

9705 DESIGN AND TECHNOLOGY
 9705/31 Paper 31 (Written 2), maximum raw mark 120

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Section A

Part A - Product Design

1 (a) Appropriate material including:

- Aluminium/copper or similar sheet metal
- Acrylic/ABS/polypropylene or similar plastic
- Specific hardwood (1)

Reasons including:

- takes a good finish/easy to form/shape
- attractive
- easy to clean (2×1)
(b) Description to include:
- appropriate method
- marking, shaping, turning, forming

Quality of description:

- fully detailed (3-6)
- some detail (0-2)

Quality of sketches (up to 2)
(c) Explanation could include:

- change in process
- change in materials
- use of jigs, formers, moulds
- simplification of design

Quality of explanation:

- logical, structured (4-7)
- limited detail (0-3)

Quality of sketches (up to 2)

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2009	9705	31

2 (a) Reasons could be
demand
simple design
very little assembly
minimal processes
For 3 reasons (3×1)
(b) Reasons could be
wide range of size and style
will wear out, new ones needed
fashion/trends
For 2 reasons well explained (2×2)
(c) Products could be
bespoke furniture
specialist clothing e.g. wedding dresses
large structures e.g. buildings, bridges
designer jewellery
For three products (3×1)
(d) Discussion could include
equipment - cost, maintenance, power requirements, range
assembly - number of parts/operations, use of bought in/standardised parts, skill level required
labour skills - complex operations, range of processes, training requirements, pay issues
Range of issues covered (3×2 marks)
Quality of discussion/examples (4)
[Total: 20]

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2009	9705	31

3 (a) Description of process

- fully detailed (3-5)
- some detail, (0-2)

Quality of sketches (up to 2)
(7×2)
(b) Profile forming

- one step production, very quick
- consistent section
- high quality finish

Compression moulding

- excellent finish
- high tolerance level (must fit)
- moulds thermosetting plastic

Extrusion

- no wastage
- exceptionally quick/consistent standard
- grain structure enhanced
(3×2)

Part B - Practical Technology

4 (a) (i) Elastic region
(ii) Limit of proportionality/elastic limit/yield point
(iii) Ultimate tensile strength
(iv) Fracture/break point
(b) Properties could be

Ductility (1) ability to be drawn (2)
Stiffness (1) to keep shape, hold paper (2)
Yield stress (1) strong enough to keep shape (2)
For two properties explained (2×3)
(c) Simple test showing

- secure one end of sample (1)
- mechanism to rotate other end (2)
- record force/effect (1)

Quality of communication (2)

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2009	9705	31

5 (a) (i) $1 \mathrm{k} \Omega$
(ii) $0.36 \mu \mathrm{~A}$
(iii) 0.07 A
(b) (i) 60 W (1) with calculation $\mathrm{P}=\mathrm{V} \times \mathrm{I}(1)$
(ii) $\mathrm{I}=\frac{\mathrm{P}}{\mathrm{V}}(1)$ current $=12 \mathrm{~A}(1)$ resistance $=250 / 12=20.8 \Omega($ or $21 \Omega)(1)$
(c) Relay -

Switch to turn other circuits on or off Current to movement (solenoid)
Small current controls large current

Example - audio amplifier, machine control
Micro switch - Switch requiring little force to activate Safety/shut off device Very small/unobtrusive

Example - fridge light

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2009	9705	31

Darlington Pair - Used in sensor circuits
Uses 2 transistors
Amplifies weak signals

Example - temperature sensor
LDR - Light Dependent Resistor - resistance decreases with increasing light
Photoconductor device
Sensors/safety systems

Example - camera light meter, street lighting
Description/function (3)
Example (1)
For three well described components with example (4×3)

6 Full description of mechanism (3)
Example (1)
For five mechanisms (5×4)
[Total: 20]

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2009	9705	31

Part C - Graphic Products

7 Explanation of when and why (3)
Example (1)
For five explanations and examples (5×4)

8 (i) Correct shaft diameter
(ii) In line wedge
(iii) Min distance
(iv) Anti clockwise
(v) 0-120 uniform
(vi) Dwell
(vii) 180-360 SHM

Displacement diagram
Quality of communication/accuracy
9 Correct isometric [3]Approx full size[2]
Quality of linework [4]
Overall shape/proportion [7]
Rendering chrome [2]
Matt texture [2]

