| Centre Number       |  |  | Candidate Number |  |  |
|---------------------|--|--|------------------|--|--|
| Surname             |  |  |                  |  |  |
| Other Names         |  |  |                  |  |  |
| Candidate Signature |  |  |                  |  |  |



General Certificate of Education Advanced Subsidiary Examination June 2015

# Design and Technology: SYST1 Systems and Control Technology

Unit 1 Materials, Components and Application

Tuesday 2 June 2015 9.00 am to 11.00 am

## For this paper you must have:

normal writing and drawing instruments.

#### Time allowed

• 2 hours

# Instructions

- Use black ink or black ball-point pen. Use pencil only for drawing.
- Fill in the boxes at the top of this page.
- Answer all the questions in Section A.
- Answer one guestion from Section B, either Question 5 or Question 6.
- Answer the question in Section C.
- You must answer the questions in the spaces provided. Do not write outside the box around each page.
- Do all rough work in this book. Cross through any work you do not want to be marked.

### Information

- The marks for the questions are shown in brackets.
- The maximum mark for this paper is 80.
- There are 20 marks for Section A, 20 marks for Section B and 40 marks for Section C.

#### **Advice**

- Illustrate your answers with sketches and/or diagrams wherever you feel it is appropriate.
- You are advised to spend approximately 30 minutes on Section A, 30 minutes on Section B and one hour on Section C.

|          | iner's Use   |
|----------|--------------|
| Examine  | r's Initials |
| Question | Mark         |
| 1        |              |
| 2        |              |
| 3        |              |
| 4        |              |
| 5        |              |
| 6        |              |
| 7        |              |
| TOTAL    |              |

## Section A

|            | Answer all the questions in this section.                                              |                      |
|------------|----------------------------------------------------------------------------------------|----------------------|
| 1 (a) (i)  | Name a suitable lubricant for reducing friction between a shaft and a bearing.         | [1 mark]             |
| 1 (a) (ii) | Name a suitable component for reducing the amount of current flowing in an el circuit. | ectrical<br>[1 mark] |
| 1 (b)      | Calculate the total Potential Difference between points A and B.                       |                      |
|            | $A \xrightarrow{\uparrow \bullet \rightarrow \bullet \rightarrow \bullet} B$           |                      |
|            | All Cells 2 Volts                                                                      | 2 marks]             |
|            |                                                                                        |                      |
|            |                                                                                        |                      |
|            |                                                                                        |                      |

4



| 2     | Explain the following terms. |           |
|-------|------------------------------|-----------|
| ? (a) | Mark/space ratio             | [2 marks] |
|       |                              | [Z marks] |
|       |                              |           |
|       |                              |           |
|       |                              |           |
|       |                              |           |
|       |                              |           |
|       |                              |           |
|       |                              |           |
|       |                              |           |
|       |                              |           |
|       |                              |           |
|       |                              |           |
| ! (b) | A negative going pulse       |           |
| ! (b) | A negative going pulse       | [2 marks] |
| ! (b) | A negative going pulse       | [2 marks] |
| ! (b) | A negative going pulse       | [2 marks] |
| ! (b) | A negative going pulse       | [2 marks] |
| ! (b) | A negative going pulse       | [2 marks] |
| ! (b) | A negative going pulse       | [2 marks] |
| ? (b) | A negative going pulse       | [2 marks] |
| ! (b) | A negative going pulse       |           |
| ? (b) |                              |           |
| ! (b) |                              |           |



| 3 | With the aid of an annotated sketch explain how a 25:1 reduction in speed of rotation between parallel shafts can be achieved using only gears with no more than 50 teeth.  [4 marks] |   |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|   |                                                                                                                                                                                       |   |
|   |                                                                                                                                                                                       |   |
|   |                                                                                                                                                                                       |   |
|   |                                                                                                                                                                                       |   |
|   |                                                                                                                                                                                       |   |
|   |                                                                                                                                                                                       |   |
|   |                                                                                                                                                                                       |   |
|   |                                                                                                                                                                                       |   |
|   |                                                                                                                                                                                       |   |
|   |                                                                                                                                                                                       | 4 |
|   |                                                                                                                                                                                       |   |
|   |                                                                                                                                                                                       |   |



| 4 (a) | Draw a circuit that will operate in the following sequence:                                                                                                                                                                    |               |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|       | <ul> <li>an SPDT switch is momentarily operated</li> <li>a 12 volt light bulb comes on and remains on</li> <li>a second SPDT switch is momentarily operated</li> <li>the system resets and the light bulb goes off.</li> </ul> | [4 marks]     |
|       |                                                                                                                                                                                                                                |               |
|       |                                                                                                                                                                                                                                |               |
|       |                                                                                                                                                                                                                                |               |
|       |                                                                                                                                                                                                                                |               |
|       |                                                                                                                                                                                                                                |               |
|       |                                                                                                                                                                                                                                |               |
|       |                                                                                                                                                                                                                                |               |
|       |                                                                                                                                                                                                                                |               |
|       |                                                                                                                                                                                                                                |               |
|       |                                                                                                                                                                                                                                |               |
| 4 (b) | Give <b>two</b> reasons why a mechanical system cannot be 100% efficient.                                                                                                                                                      | [2 × 2 marks] |
|       | Reason 1                                                                                                                                                                                                                       |               |
|       |                                                                                                                                                                                                                                |               |
|       |                                                                                                                                                                                                                                |               |
|       |                                                                                                                                                                                                                                |               |
|       | Reason 2                                                                                                                                                                                                                       |               |
|       |                                                                                                                                                                                                                                |               |
|       |                                                                                                                                                                                                                                |               |
|       |                                                                                                                                                                                                                                |               |
|       |                                                                                                                                                                                                                                |               |





#### Section B

|           | Section B                                                                                                                                                                                                              |  |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|           | Answer either Question 5 or Question 6.                                                                                                                                                                                |  |
| 5 (a) (i) | Describe in detail a system for producing oscillatory motion with a total movement of 90°. The system should produce <b>one</b> complete oscillation every <b>two</b> seconds when driven by a 360 rpm electric motor. |  |
|           | Use diagrams to support your answer.  [7 marks]                                                                                                                                                                        |  |
|           |                                                                                                                                                                                                                        |  |
|           |                                                                                                                                                                                                                        |  |
|           |                                                                                                                                                                                                                        |  |
|           |                                                                                                                                                                                                                        |  |
|           |                                                                                                                                                                                                                        |  |
|           |                                                                                                                                                                                                                        |  |
|           |                                                                                                                                                                                                                        |  |
|           |                                                                                                                                                                                                                        |  |
|           |                                                                                                                                                                                                                        |  |
|           |                                                                                                                                                                                                                        |  |
|           |                                                                                                                                                                                                                        |  |
|           |                                                                                                                                                                                                                        |  |
|           |                                                                                                                                                                                                                        |  |
|           |                                                                                                                                                                                                                        |  |
|           |                                                                                                                                                                                                                        |  |



| 5 (a) (ii) | With the aid of diagrams, show how it is possible to make the angle of oscilla | ation     |
|------------|--------------------------------------------------------------------------------|-----------|
|            | adjustable to any value between 30° and 90°.                                   | [3 marks] |
|            |                                                                                |           |
|            |                                                                                |           |
|            |                                                                                |           |
|            |                                                                                |           |
|            |                                                                                |           |
|            |                                                                                |           |
|            |                                                                                |           |
|            |                                                                                |           |
|            |                                                                                |           |
|            |                                                                                |           |
|            |                                                                                |           |
|            |                                                                                |           |
|            |                                                                                |           |
|            |                                                                                |           |
|            |                                                                                |           |
|            |                                                                                |           |
|            |                                                                                |           |
|            |                                                                                |           |
|            |                                                                                |           |
|            |                                                                                |           |
|            |                                                                                |           |
|            |                                                                                |           |
|            |                                                                                |           |
|            |                                                                                |           |
|            |                                                                                |           |
|            |                                                                                |           |
|            |                                                                                |           |
|            |                                                                                |           |
|            |                                                                                |           |
|            |                                                                                |           |
|            |                                                                                |           |
|            |                                                                                |           |
|            |                                                                                |           |
|            |                                                                                |           |
|            |                                                                                |           |
|            |                                                                                |           |
|            |                                                                                |           |



**5 (b)** With the aid of annotated sketches, describe a suitable test that could be carried out to compare the linear expansion of a range of metals for a 100° Celsius rise in temperature.

Your answer should indicate:

- the approximate size of the sample
- the method of producing the required temperature change
- the data that needs to be collected
- the method of collecting the data
- how the data is analysed.

[10 marks]



| _ |  |
|---|--|
|   |  |
|   |  |
|   |  |
|   |  |
| _ |  |
| • |  |
|   |  |
|   |  |



20

Do not answer this question if you have answered Question 5.

**6 (a)** With the aid of annotated sketches, describe in detail a method of producing the equally spaced holes shown in **Figure 1** in a piece of 6 mm thick aluminium sheet to an accuracy of ±0.1 mm.

[10 marks]

Figure 1



All dimensions shown are in millimetres.





**6 (b)** With the aid of annotated sketches, describe in detail how the plastic component shown in **Figure 2** could be produced from 1 mm thick polystyrene sheet.

[10 marks]

Figure 2



All dimensions shown are in millimetres.



20



## **Section C**

Answer this question.

A system is required to automatically deliver a pre-packaged portion of food to a pet. The package is shown in **Figure 3**.

Figure 3 (Pre-packaged food container)



All dimensions shown are in millimetres.



| 7 (a) (i)  | Identify <b>two</b> hygiene and <b>two</b> safety requirements of an automated pet feeding system. $[4 \times 1 \text{ Mark}]$       |
|------------|--------------------------------------------------------------------------------------------------------------------------------------|
|            | Hygiene 1                                                                                                                            |
|            | Hygiene 2                                                                                                                            |
|            | Safety 1                                                                                                                             |
|            | Safety 2                                                                                                                             |
| 7 (a) (ii) | With the aid of a diagram show a system that will produce an electrical pulse of 30 seconds duration once every 12 hours.  [6 marks] |
|            |                                                                                                                                      |
|            |                                                                                                                                      |
|            |                                                                                                                                      |
|            |                                                                                                                                      |
|            |                                                                                                                                      |
|            |                                                                                                                                      |
|            |                                                                                                                                      |
|            |                                                                                                                                      |
|            |                                                                                                                                      |





| 7 (b) (i) | With the aid of an annotated sketch, describe a system that will automatically produce an output of 100 mm of reciprocating motion each time it receives a short electrical pulse. |           |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|           | pulse.                                                                                                                                                                             | [5 marks] |
|           |                                                                                                                                                                                    |           |
|           |                                                                                                                                                                                    |           |
|           |                                                                                                                                                                                    |           |
|           |                                                                                                                                                                                    |           |
|           |                                                                                                                                                                                    |           |
|           |                                                                                                                                                                                    |           |
|           |                                                                                                                                                                                    |           |
|           |                                                                                                                                                                                    |           |
|           |                                                                                                                                                                                    |           |
|           |                                                                                                                                                                                    |           |
|           |                                                                                                                                                                                    |           |
|           |                                                                                                                                                                                    |           |
|           |                                                                                                                                                                                    |           |
|           |                                                                                                                                                                                    |           |
|           |                                                                                                                                                                                    |           |
|           |                                                                                                                                                                                    |           |
|           |                                                                                                                                                                                    |           |
|           |                                                                                                                                                                                    |           |
|           |                                                                                                                                                                                    |           |
|           |                                                                                                                                                                                    |           |
|           |                                                                                                                                                                                    |           |
|           |                                                                                                                                                                                    |           |
|           |                                                                                                                                                                                    |           |
|           |                                                                                                                                                                                    |           |
|           |                                                                                                                                                                                    |           |
|           |                                                                                                                                                                                    |           |
|           |                                                                                                                                                                                    |           |
|           |                                                                                                                                                                                    |           |
|           |                                                                                                                                                                                    |           |
|           |                                                                                                                                                                                    |           |
|           |                                                                                                                                                                                    |           |
|           |                                                                                                                                                                                    |           |
|           |                                                                                                                                                                                    |           |
|           |                                                                                                                                                                                    |           |
|           |                                                                                                                                                                                    |           |



| 7 (b) (ii)                  | With the aid of an annotated sketch, describe a system that will automatically produce an output of 90° of rotary movement each time it receives a short electrical pulse. |  |  |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                             | [5 marks]                                                                                                                                                                  |  |  |
|                             |                                                                                                                                                                            |  |  |
|                             |                                                                                                                                                                            |  |  |
|                             |                                                                                                                                                                            |  |  |
|                             |                                                                                                                                                                            |  |  |
|                             |                                                                                                                                                                            |  |  |
|                             |                                                                                                                                                                            |  |  |
|                             |                                                                                                                                                                            |  |  |
|                             |                                                                                                                                                                            |  |  |
|                             |                                                                                                                                                                            |  |  |
|                             |                                                                                                                                                                            |  |  |
|                             |                                                                                                                                                                            |  |  |
|                             |                                                                                                                                                                            |  |  |
|                             |                                                                                                                                                                            |  |  |
|                             |                                                                                                                                                                            |  |  |
|                             |                                                                                                                                                                            |  |  |
|                             |                                                                                                                                                                            |  |  |
|                             |                                                                                                                                                                            |  |  |
|                             |                                                                                                                                                                            |  |  |
|                             |                                                                                                                                                                            |  |  |
|                             |                                                                                                                                                                            |  |  |
|                             |                                                                                                                                                                            |  |  |
|                             |                                                                                                                                                                            |  |  |
|                             |                                                                                                                                                                            |  |  |
|                             |                                                                                                                                                                            |  |  |
| Turn over for Question 7(c) |                                                                                                                                                                            |  |  |
|                             |                                                                                                                                                                            |  |  |
|                             | _                                                                                                                                                                          |  |  |





**7 (c)** Produce a design for a complete system that will automatically deliver food to a pet .

The system should be capable of providing food for a pet for a minimum of three days. Every 12 hours a new container of food should be presented and access to the previous containers prevented.

Your diagrams should clearly show an integrated system with the interaction between the sub-systems explained.

Marks will be awarded for:

• the food presentation and denial system

 $[2 \times 3 \text{ marks}]$ 

• the sensing and control system

[6 marks]

the dimensioning of the system

[2 marks]

the assembly and layout of the sub-systems

[3 marks]

• the selection of materials, components and fixings methods.

[3 marks]



40

**END OF QUESTIONS** 





